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Abstract
Background  Seronegative Hashimoto's thyroiditis is often underdiagnosed due to the lack of antibody markers. 
Combining ultrasound radiomics with machine learning offers potential for early detection in patients with normal 
thyroid function.

Methods  Data from 164 patients with single thyroid lesions and normal thyroid function, treated surgically between 
2016 and 2024, were retrospectively collected from four hospitals. Radiomics features were extracted from ultrasound 
images of non-tumorous hypoechoic areas. Pathological lymphocytic infiltration and hypoechoic ratios were 
evaluated by senior pathologists and ultrasound physicians.

A machine learning model, CCH-NET, was developed using a random forest classifier after feature selection with Least 
Absolute Shrinkage and Selection Operator (LASSO) regression. The model was trained and tested with an 80:20 split 
and compared to senior ultrasound physicians.

Results  The CCH-NET model achieved a sensitivity of 0.762, specificity of 0.714, and an area under the curve (AUC) of 
0.8248, outperforming senior ultrasound physicians (AUC = 0.681). It maintained consistent accuracy across test sets, 
with F1 scores of 0.778 and 0.720 in Test_1 and Test_2, respectively, and exhibited superior predictive rates.

Conclusion  The CCH-NET model enhances accuracy in detecting early Seronegative Hashimoto's thyroiditis over 
senior ultrasound physicians.
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Introduction
Seronegative Hashimoto's thyroiditis (Seronegative HT) 
is a distinct subtype of Hashimoto's thyroiditis (HT), 
characterized by the absence of thyroid antibodies, a 
more insidious disease course, and lower invasiveness [1]. 
However, it can still lead to hypothyroidism, frequently 
resulting in misdiagnosis or underdiagnosis, with a prev-
alence reported to reach as high as 20.8% [2]. In 2020, L. 
Croce et al. established the diagnostic criteria for Sero-
negative HT [2], which include negative TPO-Ab (thyroid 
peroxidase antibody) and TG-Ab (thyroglobulin anti-
body), the presence of subclinical or clinical hypothyroid-
ism, and diffuse hypoechogenicity on thyroid ultrasound. 
Notably, Seronegative HT is often diagnosed after hypo-
thyroidism has already developed, and it accounts for 
34.6% of primary hypothyroidism cases. Thus, improving 
the early diagnostic rate of Seronegative HT during the 
euthyroid phase and reducing missed diagnoses are criti-
cal clinical challenges.

According to L. Croce’s criteria, the diagnosis of Sero-
negative HT during the early euthyroid phase is chal-
lenging due to the lack of typical antibody presentation 
and distinct ultrasound features. Studies by M. Rotondi 
et al. have shown that hypoechoic areas observed on thy-
roid ultrasound are associated with lymphocytic infil-
tration, which may serve as a key diagnostic marker for 
early Seronegative HT [3–5]. However, research in this 
area remains limited. In recent years, machine learn-
ing has been widely adopted in the medical field [6, 7]. 
Machine learning has been widely applied in the medical 
field, particularly in analyzing large volumes of imaging 
data to develop diagnostic models. These models enable 
the comprehensive evaluation of complex ultrasound 
features, facilitating the identification of subtle early-
stage disease changes.By assisting clinicians, machine 
learning models significantly enhance diagnostic effi-
ciency and accuracy, demonstrating notable advantages 
in early detection and differential diagnosis.This study 
included patients with a pathological diagnosis of HT 
following thyroid tumor surgery. The research focused 
on the"hypoechoic"features of thyroid ultrasound and 
analyzed ultrasound images within a 0.5 cm perimeter 
surrounding the tumor lesion. An AI-assisted ultra-
sound diagnostic model was developed for HT, using 
lymphocytic infiltration ratios from pathological slides 
as a reference to refine the model’s detection algorithms 
and thresholds. The aim was to enhance the diagnostic 

accuracy of early Seronegative HT during the euthyroid 
phase, reduce missed diagnoses, and assist in clinical 
decision-making.

Methods
Ethical approval for this retrospective case-control study 
was granted by the Ethics Committee of Liaoning Pro-
vincial People's Hospital (Ethics No. [2023] H013). The 
study adhered to the principles of the Declaration of Hel-
sinki, and eligible patients were identified through medi-
cal records with written informed consent obtained from 
each patient after full explanation of the purpose and 
nature of all procedures used. This study was registered 
in the Chinese Clinical Trial Registry (CTR2400092179; 
12 November 2024.).

Study subjects and subgroups
The study included a total of 164 patients undergoing thy-
roid surgery for tumor treatment across four hospitals in 
China (Liaoning Provincial People's Hospital: 101 cases, 
Linghai Dalinghe Hospital, Liaoning Province: 9 cases, 
Lixin County People's Hospital,Anhui Province: 6 cases, 
and Fengcheng Phoenix Hospital,Liaoning Province: 
18 cases) from November 2016 to January 2024, with a 
total of 298 ultrasound images collected. The training 
set consisted of 110 patients with 220 images, while the 
external test set included 24 patients with 48 images, and 
the normal control group comprised 30 patients with 30 
images. All cases were categorized into antibody-positive 
(training set, internal test, external test: n= 50, n= 9, n= 
12) and antibody-negative groups (training set, internal 
test, external test: n= 42, n= 9, n= 12), along with a non-
Hashimoto’s thyroiditis normal control group (n= 30), as 
detailed in Fig. 1. Inclusion criteria: (1) Patients with nor-
mal preoperative thyroid function tests. (2) Patients who 
underwent thyroidectomy for thyroid tumor disease.

(3) Comprehensive transverse and longitudinal ultra-
sound images centered on the tumor, with reports pro-
vided by senior ultrasound physicians with over 10 years 
of experience.

(4) Postoperative pathological results confirming the 
presence of HT. Exclusion criteria: (1) Pregnant or breast-
feeding women; (2) History of neck irradiation or thyroid 
surgery prior to this study; (3)Current and/or previous 
treatment with thyroid hormones; (4)Use of corticoste-
roids, amiodarone, lithium, oral contraceptives, or other 
medications that interfere with thyroid function [8]; (5) 
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Coexisting chronic diseases that severely affect bodily 
function; [6] Previous diagnosis of other thyroid diseases, 
particularly Graves’ disease and subacute thyroiditis; (7) 
Presence of severe obesity (BMI ≥ 30 kg/m2); (8) Incom-
plete thyroid function tests and ultrasound image data 
within one month prior to surgery.

Data collection
Preoperative data: including patient demographics (age, 
sex), thyroid function, and ultrasound images, along 
with postoperative pathology slides, were collected for 
analysis. Thyroid ultrasound images were captured using 
PHILIPS EPIQ7, SIEMENS-S3000, or GE Voluson color 
Doppler ultrasound machines, each equipped with 5–12 
MHz linear array probes. Patients were positioned supine 
with the head tilted backward to expose the anterior neck 
for optimal imaging. Longitudinal and transverse images 
of the thyroid lobes and isthmus were acquired by senior 
ultrasound physicians with over 10 years of clinical expe-
rience, following the American College of Radiology 
(ACR) accreditation standards [9]. The largest cross-
sectional view of the thyroid tumor, in both longitudi-
nal and transverse planes, was selected, and ultrasound 
images within 0.5 cm of the tumor margin were utilized 
for machine learning analysis. The pathological slide 
containing the largest tumor diameter was selected, and 
lymphocyte infiltration within a 0.5 cm radius around the 

nodule was assessed and recorded by a senior pathologist 
[10], serving as the reference standard for training and 
testing of the radiomic-histologic model.

Machine learning models construction
Data processing and model development
Image preprocessing and Region of Interest (ROI) 
segmentation (Mask)
In this study, ROI segmentation was performed using 
the Labelme v5.3.1 software to obtain JSON files, and 
these files were processed in a Python 3.6 environment 
to generate mask images. Main Process: The ROI, defined 
as the 0.5 cm ring-shaped area surrounding the nodule 
in the ultrasound image, was manually delineated using 
the LabelMe software.The central nodular lesion was 
delineated as the"exclusion region,"while the anterior 
neck muscles were marked as the"hypoechoic reference 
region."After delineating these three regions, each was 
separately labeled and saved as a JSON file, creating the 
final delineation data. The JSON file was then input into 
the program, and functions from the LabelMe library 
were used to convert the image into a mask image, saved 
as a PNG file with the suffix “mask.” The original data 
image was also converted into a grayscale image and 
saved as a PNG file with the suffix “original.”

A grayscale quantization method was employed to dis-
cretize the grayscale levels of the image into a limited 

Fig. 1  Flow chart regarding the participants in this study
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number of levels. This approach reduces computational 
complexity and helps minimize the impact of noise on 
feature extraction. Quantization refers to the process of 
converting the continuous brightness variations of image 
pixels into discrete values. In other words, the amplitude 
values of the spatial coordinates in the original grayscale 
image are discretized. A greater number of quantization 
levels results in richer image layers, higher grayscale res-
olution, and improved image quality. Conversely, fewer 
quantization levels result in less detailed image layers, 
lower grayscale resolution, and a layered contour phe-
nomenon in the image, reducing its quality.

High-throughput radiomic feature extraction and selection
The processed mask images were imported into the 
PyRadiomics library, and a feature extractor was defined 
for radiomics feature extraction using PyRadiomics ver-
sion 3.0.1. Subsequently, the mask and original grayscale 
images were loaded into the program, and the extractor.
execute() method was utilized to extract features from 
both. In the PyRadiomics configuration file (yaml), the 
setting section was customized with a bin width of 25, 
the interpolator set to"sitkBSpline,"sigma set to 1.0, and 
the image type specified as"Original"for direct extraction. 
The extracted results were stored for subsequent analysis.

The extracted features were then converted into a list 
and saved to an Excel file, yielding 94 high-throughput 
radiomics features [11]. These features included First 
Order Statistics (19 features), Gray Level Co-occurrence 
Matrix (24 features), Gray Level Run Length Matrix (16 
features), Gray Level Size Zone Matrix (16 features), Gray 
Level Dependence Matrix (14 features), and Neighboring 
Gray Tone Difference Matrix (5 features). Additionally, 
the ratio of hypoechoic areas was included as a radiomics 
feature, resulting in a total of 95 features for subsequent 
modeling and selection.

Feature selection, statistical analysis, and model 
development
Ratio feature computation
The grayscale mean of the muscle tissue region was used 
to standardize the hypoechoic region's pixel intensity, 
ensuring uniform feature extraction within the ROI for 
subsequent analysis. The model development was con-
ducted in a Python 3.6 environment using PyCharm. 
Input data included the original grayscale images ("origi-
nal") and the mask images ("mask image"), and the ratio 
of the hypoechoic region and the optimal threshold were 
computed through comparative analysis.

Main process  The original grayscale image files ("origi-
nal") and the mask files ("mask image") were read and con-
verted into pixel matrices. The number of non-zero pixels 
in the muscle matrix ('musl') and the mean value of these 

pixels were calculated, respectively. Similarly, the num-
ber of non-zero pixels and the average value for the ROI 
were computed. The pixel values of the ROI were then 
subtracted by the grayscale mean of the muscle matrix to 
obtain the calibrated ROI. The Pearson correlation coef-
ficient (PCC) was introduced as an evaluation metric.

	

PCC(x, y) =
∑

(xi − x)(yi − y)√∑
(xi − x)2 ·

∑
(yi − y)2

The similarity between the hypoechoic region and 
the ROI was calculated by iteratively checking the 
PCC between the overlapping area of the ROI and the 
hypoechoic region. The optimal threshold was deter-
mined by maximizing the correlation between the com-
puter-identified and manually delineated hypoechoic 
regions. This threshold was continuously refined by 
comparing it with the gold standard from pathological 
assessments provided by the pathology department, thus 
improving the accuracy of threshold selection and recog-
nition results.

At this threshold, the proportion of the hypoechoic 
region within the ROI, referred to as the ratio, was cal-
culated. This ratio represented the proportion of the 
hypoechoic area within the ROI as identified by the 
computer and was used as a feature. As shown in Fig. 3 
A1 and A2, the red region indicates the irrelevant area 
(tumor area), the green region represents the study area 
(hypoechoic region), and the yellow area is the reference 
region (muscle region).

Feature Selection Feature selection was performed on 
the ultrasound radiomics features from the training set. 
Pearson correlation analysis was initially used to exclude 
features with a correlation coefficient greater than 0.9. 
Subsequently, the t-distributed stochastic neighbor 
embedding (t-SNE) nonlinear dimensionality reduction 
algorithm was applied to the extracted multidimensional 
features for dimensionality reduction and visualization. 
T-SNE was used to visualize high-dimensional data in 
a two- or three-dimensional space, as it models similar 
samples by nearby points and dissimilar samples by dis-
tant points.

At a higher level, t-SNE constructs a probability dis-
tribution for high-dimensional samples, where similar 
samples are likely to be selected, while dissimilar points 
have a low probability of selection. t-SNE then defines a 
similar distribution for points in the low-dimensional 
embedding. Finally, it minimizes the Kullback-Leibler 
divergence between the two distributions concerning the 
embedding point positions [12].

After dimensionality reduction, Least Absolute Shrink-
age and Selection Operator (LASSO) regression was 
applied to select the most informative features. LASSO 
regression, a linear regression model, incorporates L1 
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regularization to constrain the coefficients during model 
training, automatically selecting features by shrinking the 
coefficients of less important features to zero, thereby 
simplifying the model. The objective of LASSO regres-
sion is to minimize the following loss function:

	
Loss = 1

2m

m∑
i=1

(yi − ŷi)2 + α

n∑
j=1

|βj |

The loss function includes a least-squares term and a reg-
ularization term (specifically, the L1 norm). The goal is to 
find a set of regression coefficients (β) that minimize the 
loss function.

In Python, the LASSO process was implemented using 
the LassoCV function from sklearn.linear_model, along 
with the StandardScaler function from sklearn.prepro-
cessing for feature normalization. The StandardScaler 
ensured that all features were scaled to comparable 
ranges, enabling fair coefficient comparisons. For the 
hyperparameter alphas (corresponding to λ, the penalty 
term), a grid search was conducted. The range of α val-
ues was defined from 10−4 to 100, on a logarithmic scale, 
divided into 50 intervals using the np.logspace function. 
Through iterative adjustment of the penalty term α, the 
regression coefficients were progressively reduced. Only 
the non-zero coefficients corresponding to significant 
features were retained. Cross-validation was then used to 
determine the optimal α value (αmin), ensuring the selec-
tion of the best feature set.

Machine learning classifier
After feature selection using LASSO regression, a Ran-
dom Forest (RandomForestClassifier) machine learning 
model was constructed based on the selected features. In 
machine learning, Random Forest is an ensemble classi-
fier comprising multiple decision trees, where the final 
output is determined by the majority vote of individual 
trees. Among existing algorithms, RandomForestClassi-
fier demonstrates excellent accuracy, operates efficiently 
on large datasets, handles high-dimensional feature 
inputs without requiring dimensionality reduction, and 
effectively evaluates the importance of each feature in 
classification tasks.

Data preprocessing
The necessary libraries and modules were first imported, 
including pandas for data processing and components 
from sklearn, such as RandomForestClassifier, DictVector-
izer for feature extraction, and GridSearchCV for hyper-
parameter tuning and cross-validation. The dataset was 
then loaded, and the selected features—original_glcm_
ClusterShade, original_glcm_Idmn, original_ngtdm_Busy-
ness, original_glcm_MCC, and ratio—were extracted. 

These features were subsequently transformed into a dic-
tionary-based representation using DictVectorizer.

Model construction
A RandomForestClassifier from sklearn.ensemble was 
defined with key hyperparameters, including n_estima-
tors (number of trees in the forest), max_depth (maxi-
mum depth of each tree), min_samples_split (minimum 
number of samples required to split an internal node, set 
to 2), min_samples_leaf (minimum number of samples 
required to be at a leaf node, set to 1), criterion (set to 
gini for impurity-based feature splitting), and bootstrap 
(set to True, indicating that bootstrap sampling was used 
when building trees). Among these, n_estimators was the 
most critical hyperparameter, initialized at 50 with an 
increment of 50 up to a maximum of 1000. A grid search 
with cross-validation (GridSearchCV) was employed to 
optimize the hyperparameters, particularly n_estimators 
(number of decision trees) and max_depth (maximum 
depth of decision trees). The Random Forest classifier 
was trained using the training dataset (X_train, y_train), 
and the optimal hyperparameter combination (best_
params) and best-performing estimator (best_estimator) 
were identified.

Figure 2 illustrates the construction process of the 
machine learning model CCH-NET. The flowchart 
includes image acquisition, image preprocessing, feature 
extraction, feature selection, calculation of ratios, model 
building and analysis, and input of images for AI-based 
diagnosis. The CCH-NET model was developed using the 
selected features.

Figure 3 presents the ultrasound images and their cor-
responding pathological images from the test set, which 
were used for predictive modeling and performance 
evaluation.

Figure 4 illustrates the trajectory of a coefficient for 
an individual variable. The y-axis indicates the coeffi-
cient values, while the x-axis represents log(λ). As log(λ) 
increases, the regression coefficients (y-axis values) pro-
gressively converge to zero. Variables with non-zero coef-
ficients are the important features selected for the model.

Figure 5 shows the relationship between the logarithm 
of the penalty term, log(λ), and the mean squared error 
(MSE). The x-axis represents log(λ), while the y-axis 
shows the MSE. A smaller y-axis value indicates better 
model fitting. The left dashed line corresponds to λ_min, 
which is the λ value with the minimum bias and repre-
sents the optimal model fitting. The right dashed line 
corresponds to λ-se, which is one standard error to the 
right of λ_min.

Figure 6 illustrates how the coefficients of the selected 
features evolve as log(λ) increases. As log(λ) increases, 
the coefficients of the selected features gradually 
approach zero. Features with slower coefficient reduction 
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and later convergence to zero contribute more signifi-
cantly to the predictive model, highlighting their greater 
importance in the model.

Statistical methods
Data analysis was performed using SPSS 26.0 software. 
Baseline characteristics were confirmed to follow a nor-
mal distribution. Continuous variables were expressed as 
Mean ± Standard Deviation (Mean ± SD) and compared 

Fig. 3  Ultrasound and pathological images of antibody-positive and antibody-negative cases. A1: Antibody-positive ultrasound: red = excluded area 
(tumor), green = ROI, yellow = reference area. A2: Antibody-negative ultrasound: same color codes as A1. B1: Antibody-positive pathology (40x): 10–20 % 
lymphocyte infiltration; yellow arrow = thyroid tumor, green arrow = lymphocyte cluster.B2: Antibody-negative pathology (40x): 5% lymphocyte infiltra-
tion; same arrow indicators as B1. C1: Antibody-positive pathology (100x): 10–20 % lymphocyte infiltration. C2: Antibody-negative pathology (100x): 5% 
lymphocyte infiltration; green arrow = lymphocyte cluster

 

Fig. 2  Method and process of establishing CCH-NET

 



Page 7 of 12Wu et al. BMC Immunology           (2025) 26:27 

between groups using independent sample t-tests. 
Categorical data were presented as frequencies and per-
centages (n, %) and analyzed using chi-square (χ2) tests. 
A P-value < 0.05 was considered statistically significant. 
The diagnostic performance of the model was evaluated 
using receiver operating characteristic (ROC) curves, 
with pathological results serving as the gold standard. 
The AUC was used to quantitatively assess the diag-
nostic accuracy of the model, and its performance was 
compared to diagnostic outcomes assessed by senior 
ultrasound physicians with extensive experience.

Results
Clinical profiles of patients included in this study
Table 1 summarizes the baseline characteristics of 
HT patients (training set: n= 92, test set: n= 42). Sig-
nificant differences were observed in age, TSH, 
TPOAb, and TGAb levels between classic Hashimoto’s 
thyroiditis(CHT) and Seronegative HT patients across 
all sets. Specifically, Seronegative HT patients were sig-
nificantly older than CHT patients (training set: P= 0.05; 
internal test set: P= 0.01; external test set: P= 0.01). In the 
training set, TSH levels in Seronegative HT patients were 

Fig. 6  Coefficient trajectories of the selected features

 

Fig. 5  Cross-validation curve for LASSO regression

 

Fig. 4  Coefficient path diagram for regression
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significantly lower compared to CHT patients (P= 0.02). 
Additionally, FT4 levels in the Seronegative HT group 
were significantly higher than those in the CHT group in 
the internal test set (P = 0.04).

Comparison of diagnostic efficacy between the CCH-NET 
Model and senior ultrasound physicians
The hypoechoic regions identified by CCH-NET were 
compared to the lymphocytic infiltration percentages 
from pathological analysis. Diagnostic accuracy was 
defined as a match or a discrepancy within 3%. Among 9 
HT patients in the test sets with discrepancies, 8 showed 
AI-detected hypoechoic areas within 10% of pathological 
findings, with an average discrepancy of 6.10%, while 1 
patient had a discrepancy of 11%.

Figure 7 illustrates the ROC curves comparing the 
diagnostic performance of the CCH-NET model and 
senior ultrasound physicians. The AUC of CCH-NET 
was 0.8482, surpassing that of the senior ultrasound 

physicians (0.681), demonstrating the superior diagnostic 
efficacy of the CCH-NET model.

CCH-NET demonstrated significantly higher diagnos-
tic accuracy than s senior ultrasound physicians, with 
internal (88.89% vs. 22.22%, p< 0.01).For the external 
test set, CCH-NET also showed higher accuracy (75.00% 
and 66.67% vs. 50.00%), though the difference was not 
statistically significant (p> 0.05). For the normal group, 
both methods achieved identical diagnostic accuracy of 
93.33% (P = 1.00).

The confusion matrix for CCH-NET's diagnostic per-
formance is presented in Fig. 8. The model correctly iden-
tified 32 True Positives (TP) and 30 True Negatives (TN), 
with 12 False Positives (FP) and 10 False Negatives (FN).

Table 2 presents the diagnostic performance metrics 
of the CCH-NET model, including Accuracy, Preci-
sion, Recall, Sensitivity, Specificity, and F1 Score. The 
model demonstrated superior predictive performance in 
Test_1, achieving an F1 Score of 0.778. In Test_2, which 

Table 1  Baseline characteristics of HT patients
Items Training set P-value Internal test set P-value External test set P-value

CHT(n= 50) Seronegative 
HT(n= 42)

CHT(n= 9) Seronegative 
HT(n= 9)

CHT(n= 12) Seronegative 
HT(n= 12)

Female/Male 47/3 41/1 0.40 8/1 9/0 0.50 11/1 12/0 0.50
Age(years) 48.4 ± 13.1 53.7 ± 9.6 0.05 51.3 ± 12.7 54.1 ± 8.3 0.01 44.2 ± 16.7 55.5 ± 8.3 0.01
FT3(pg/ml) 3.35 ± 0.74 3.24 ± 0.43 0.09 3.15 ± 0.24 3.41 ± 0.57 0.13 3.74 ± 1.15 3.01 ± 0.41 0.08
FT4(ng/dl) 1.23 ± 0.22 1.29 ± 0.23 0.39 1.14 ± 0.09 1.27 ± 0.21 0.04 1.32 ± 0.29 1.26 ± 0.26 0.76
TSH(μU/ml) 3.10 ± 3.63 2.22 ± 1.23 0.02 3.47 ± 2.77 1.57 ± 1.00 0.13 3.12 ± 4.02 2.76 ± 0.89 0.09
TPOAb(U/ml) 557.81 ± 530.12 37.18 ± 11.86 0.00 1038.96 

± 385.41
35.49 ± 8.65 0.00 136.87 ± 138.76 37.69 ± 13.72 0.02

TGAb(U/ml) 242.18 ± 194.71 20.75 ± 14.87 0.00 252.51 ± 196.84 27.07 ± 20.08 0.00 347.56 ± 231.57 20.64 ± 14.09 0.00

Fig. 7  The ROC curve and AUC for CCH-NET and senior ultrasound physicians
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comprised data from different hospitals, the model main-
tained consistent diagnostic accuracy with an F1 Score 
of 0.720, indicating robust generalization across diverse 
datasets. Additionally, the model's Positive Predictive 
Rate and Negative Predictive Rate were consistently 
higher than those of senior ultrasound physicians in both 
test sets, further underscoring its diagnostic reliability.

Discussion
A key pathological hallmark of Seronegative HT is early 
focal or diffuse lymphocytic infiltration [13]. While fine 
needle aspiration biopsy (FNAB) is an effective diag-
nostic tool for Seronegative HT, its invasive nature 
often leads to poor patient acceptance [14]Ultrasound, 
a widely used non-invasive diagnostic modality, plays 
a pivotal role in the detection of thyroid disorders. 
Studies indicate that most Seronegative HT patients 
exhibit"hypoechoic"features in their ultrasound images 
[5], which are regarded as early ultrasonographic markers 
of Seronegative HT [15, 16]. Leveraging this feature, the 
diagnostic sensitivity of ultrasound physicians for HT can 
be enhanced. Hence, ultrasound offers significant clinical 
utility for the early screening of both HT and Seronega-
tive HT.

The application of artificial intelligence (AI)-assisted 
ultrasound diagnostics has advanced considerably in 
the assessment of thyroid nodules [17–19]; however, it 
remains in the nascent stages of development within 
the domain of HT. Zhao et al. [20] developed a convolu-
tional neural network-based computer-aided diagnosis 
model for Hashimoto's thyroiditis (CAD-HT), achieving 
a diagnostic efficacy of 89%. Zhang et al. [21]devised a 
dual-branch deep learning architecture capable of con-
currently processing serological markers and ultrasound 
images, culminating in the development of a diagnostic 
model known as HTNet, which attained a diagnostic 
accuracy of 83.2% for HT and an AUC value of 94.9%. 
Both studies represent the latest advancements in cur-
rent HT research; however, neither included Seronega-
tive HT within their scope of investigation.

Our patient data suggest that the prevalence age of 
seronegative HT is higher than that of CHT, indicating 
that the course of seronegative HT may be more insidi-
ous, with milder symptoms or slower progression. This 
underscores the importance of early diagnosis, particu-
larly in screening older age groups. Furthermore, sero-
negative HT patients exhibited lower TSH levels and 
higher FT4 levels (Table 1), aligning with the findings 
reported by Mario Rotondi [13]. These findings suggest 

Table 2  Diagnostic performance metrics of the CCH-NET model in test_1 and test_2
Type Total 

sample size
Acc Pre Rc F1-Score Sen Sc Positive 

predictive rate
Negative 
predictive rate

Test_1 36 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778
Test_2 48 0.727 0.692 0.750 0.720 0.750 0.667 0.692 0.727
Test_total 84 0.738 0.727 0.762 0.744 0.762 0.714 0.727 0.750

Fig. 8  Confusion matrix for CCH-NET in diagnosing Hashimoto's thyroiditis
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that seronegative HT causes less thyroid damage, which 
may be a characteristic feature of the condition. However, 
distinguishing between seronegative HT and CHT based 
on this feature alone is not feasible. Therefore, ultrasound 
analysis, augmented by imaging histology and machine 
learning techniques, may serve as a more accurate tool 
for early diagnosis, particularly in patients with atypical 
or antibody-negative clinical presentations. Importantly, 
the model demonstrates robustness and outperforms the 
diagnostic performance of senior ultrasound physicians, 
regardless of varying antibody statuses. It is important to 
note that the model demonstrates robust performance, 
outperforming senior ultrasound physicians, regardless 
of antibody status. This further validates the conclusions 
drawn by Zhao et al. on the CAD-HT model and Zhang 
et al. on HTNet.These findings indicate that radiomics-
based machine learning models can reliably and effec-
tively diagnose HT and related conditions without 
reliance on antibody expression, adapting well to diverse 
patient groups and exhibiting strong robustness. A retro-
spective cross-sectional study revealed that Seronegative 
HT accounts for up to 34.6% of primary hypothyroidism 
cases [22]. Given this proportion, many Seronegative 
HT cases may remain undetected. Therefore, the core of 
this study is to improve the detection rate of early Sero-
negative HT in patients with normal thyroid function or 
subclinical hypothyroidism by applying machine learn-
ing models. In our internal test set, senior ultrasound 
physicians achieved a low diagnostic accuracy (39.09%), 
likely due to the milder autoimmune inflammatory infil-
tration and smaller thyroid volume in Seronegative HT 
compared to CHT [13], as well as the less evident coarse 
internal structure on ultrasound [22], making it chal-
lenging to identify typical features. Thus, improving the 
early detection of Seronegative HT is critical. Our study 
demonstrates that the CCH-NET model can enhance the 
diagnostic accuracy of ultrasound physicians for Sero-
negative HT, facilitating timely intervention for early-
stage patients and potentially preventing the onset of 
hypothyroidism.

In this study, the multidimensional features of ultra-
sound images are extracted by using pyradiomics cor-
relation, and Scikit-Learn correlation methods, such as 
T-SNE dimensionality reduction method and PCC eval-
uation metrics, are introduced to filter the features that 
may be relevant and effective, so as to simplify the model 
by significantly reducing the computational time com-
plexity, and at the same time, to ensure the simplicity of 
the model and the validity of the model. In the process of 
constructing the model, negative case images and posi-
tive case images are grouped multiple times, and leave-
one-out cross-validation is used. This cross-validation 
method is unique in that it uses a single observation in 
the original sample as the test data, and the rest of the 

observations as the training data, which avoids the nar-
rowness and overfitting of fewer number of cases and 
fewer number of positive cases [23], and effectively 
ensures that the model can be tested in case of limited 
number of cases, which effectively guarantees the model's 
validity in case of limited number of cases. accuracy of 
CCH-NET diagnosis in limited cases.

First, it is based on retrospectively collected data from 
thyroid surgery cases, which were pathologically con-
firmed as seronegative. The relatively small number of 
eligible samples may limit the model's generalization 
ability. Furthermore, while the majority of patients in 
this study were female, reflecting the known female pre-
dominance in Hashimoto's Thyroiditis, the sex distribu-
tion between the Seronegative HT and CHT groups was 
not significantly different (P > 0.05, Table 3). This sug-
gests that sex-related variability did not influence the 
diagnostic performance of the model. However, the over-
representation of female patients in our dataset may still 
limit the generalizability of the findings to male patients. 
Future studies with more balanced sex distributions are 
warranted to validate the model across diverse popula-
tions.From an algorithmic perspective, during feature 
selection, Lasso regression can be unstable when the 
number of feature variables greatly exceeds the number 
of samples, as it may not perform group selection, mean-
ing that related variables may not be selected or excluded 
together. During the dimensionality reduction process 
using the t-SNE algorithm, the results can be highly 
sensitive to initialization, leading to different outcomes 
depending on the initialization. Additionally, t-SNE has 
high computational complexity, requiring significant 
processing time for large-scale datasets. Although cer-
tain variables, such as TSH and age, did not significantly 
impact model performance, future research should 
increase the sample size to further optimize the model. 
Second, nine HT patients showed bias in both the inter-
nal and external test sets. This may be due to the fact that 
the ultrasound images used contained only two-dimen-
sional images of the longitudinal and transverse sections 

Table 3  The diagnostic accuracy of CCH-NET and senior 
ultrasound physicians for different antibodies in the test set
Items CCH-NET Senior 

ultrasound 
physicians

X2 P-value

Internal test 
accuracy

CHT(9cases) 88.89% 22.22% 8.10 < 0.01
Seronegative 
HT (9 cases)

88.89% 22.22% 8.10 < 0.01

External test 
accuracy

CHT (12 cases) 75.00% 50.00% 1.60 0.21
Seronegative 
HT (12 cases)

66.67% 50.00% 0.69 0.41

Normal 
group 
accuracy

Normal group
(30 cases)

93.33% 93.33% 0.00 1.00
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of the largest diameter of the thyroid nodule, whereas the 
periphery of the nodule is a three-dimensional space. In 
the case of lymphocytic infiltration distribution, there 
exists the possibility of missed detection [24]. The appli-
cation of AI and dynamic 3D imaging histology should 
be explored in subsequent studies [25]. Third, this study 
only focused on the ultrasonographic features of early 
Seronegative HT"hypoechoic."In other stages of HT, such 
as"pseudonodule","mild enlargement of the gland"in the 
progressive stage,"lattice-like fibrous segregation"in the 
active stage, and"echogenic enhancement"in the recov-
ery stage [26], were not used as indicators for model 
learning. Therefore, in future research, we will focus on 
expanding the sample size of the study, introducing the 
AI learning of dynamic ultrasound [27], and combining 
with ultrasound imaging histology multi-feature analy-
sis to pursue the further improvement of the diagnostic 
accuracy of CCH-NET for Seronegative HT.

In conclusion, the CCH-NET model, integrating 
radiomics and machine learning methods, offers a prom-
ising tool for the early diagnosis of SN-HT, with potential 
value in clinical applications.
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