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Abstract
Background Hashimoto’s thyroiditis (HT) is one of the most common autoimmune disorders characterized by 
diffuse enlargement of the thyroid gland, lymphocyte infiltration, and thyroid-specific autoantibodies. Cellular and 
humoral immune disorders have been implicated in the development of HT. However, little is known regarding the 
role of immune-related molecules in HT. This study was aimed to identify key immune-related biomarkers in HT by 
using bioinformatic analysis.

Method Integration of the sequencing data from HT and normal control (NC) in the GSA and GTEx databases yielded 
a dataset named NGS. The GSE138198 dataset from the GEO database was downloaded as a validation set. WGCNA 
analysis was performed to identify key modules associated with HT. Lasso regression analysis (LASSO) and random 
forest (RF) were performed to determine potential diagnostic biomarkers. The potential value was assessed by using 
receiver operating characteristic (ROC) curve analysis. CIBERSORT algorithm was used to evaluate the infiltration of 
immune cells in HT and NC samples. The transcript levels of verified genes from expanded samples were detected by 
quantitative real-time PCR.

Results A total of 1,401 differentially expressed genes (DEGs) were identified in HT patients. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEGs were predominantly 
enriched in immune-related pathways. Furthermore, 192 immune-related genes were identified in HT through the 
intersection of WGCNA modules, DEGs, and the IRGs. Among them, two upregulated genes ((Bruton’s tyrosine kinase, 
BTK) and CD19) showed the potential diagnostic value for HT by using machine learning. The ROC curve analysis 
revealed that BTK had a higher diagnostic value than CD19 across two datasets. Intriguingly, only BTK expression was 
upregulated in the peripheral blood mononuclear cells of HT patients, and was significantly positively correlated with 
the serum levels of thyroid autoantibodies. Further studies confirmed a significant positive correlation between BTK 
and increased proportions of plasma cells in HT patients.
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Introduction
Hashimoto’s thyroiditis (HT) is an autoimmune thyroid 
disease characterized by the production of autoantibod-
ies against thyroid gland. The incidence of HT varies 
by race and gender, with the incidence in females being 
5 to 10 times higher than in males [1]. The pathological 
characteristics of HT are diffuse inflammatory lympho-
cytic infiltration of the thyroid interstitium, forming ter-
tiary lymphoid structures, which causes varying degrees 
of thyroid cell damage and atrophy, thyroid interstitial 
fibrosis, and progressive hypothyroidism [2]. Similar to 
other autoimmune diseases, HT is generally believed to 
be the result of genetic, environmental and epigenetic 
factors, ultimately leading to thyroid microenvironment 
disorders [1]. However, the pathogenesis of HT is not 
broadly known.

The diagnosis of HT is based on clinical symptoms of 
hypothyroidism, elevated levels of anti-thyroglobulin 
antibody (TgAb) and anti- thyroid peroxidase antibody 
(TPOAb), high thyroid-stimulating hormone (TSH) lev-
els, and characteristic findings on thyroid ultrasound [3]. 
However, these clinical manifestations are not specific 
and may also be present in other thyroid diseases [4]. 
Currently, levothyroxine monotherapy remains the main 
treatment for hypothyroidism caused by HT [5]. This 
treatment is symptomatic and requires lifelong medica-
tion. Moreover, excessive or insufficient treatment can 
increase risk of cardiovascular diseases [6]. To improve 
the diagnostic accuracy of HT and overcome the limi-
tations of current treatment methods, novel biomark-
ers were identified, including oxidative stress markers 
[7], noncoding RNAs [8, 9], and metabolic biomarkers 
[10]. In recent years, bioinformatics methods have been 
applied to identified the key genes shared by HT and 
papillary thyroid carcinoma [11, 12]. However, the study 
of immune-related biomarkers for HT remains poorly 
understood.

In this study, we integrated existing high-throughput 
sequencing data from HT patients and identified the 
potential immune-related genes by using bioinformatics 
analysis. Then, the screened genes were further validated 
by expanding the sample size. Through this approach, 
we aim to identify the potential biomarkers and provide 
insights into the development of novel immune thera-
peutic targets for HT.

Materials and methods
Data collection and processing
The HRA001684 dataset was obtained from the GSA-
Human database ( h t t p  s : /  / n g d  c .  c n c  b . a  c . c n  / g  s a - h u m a n /), 
which is a subset of the GSA database contained human 
genetic resources [13]. In our analysis, we used the tran-
scriptome sequencing data of 16 HT and 50 normal con-
trol (NC) samples from the HRA001684 dataset. The 
raw data was preprocessed through Trim_galore, STAR, 
Picard, and RNA-SeQC tools, including trimming, align-
ment, sorting, deduplication, and expression calcula-
tion along with gene reference and annotation files from 
GTEx V8 version ( h t t p  s : /  / g i t  h u  b . c  o m /  b r o a  d i  n s t  i t u  t e / g  t 
e  x - p  i p e  l i n e  / t  r e e / m a s t e r / r n a s e q). In addition, Qiu et al. 
screened HT patients from the thyroid pathology atlas in 
the GTEx database [14]. Based on this, the transcriptome 
sequencing data of 14 HT and 234 NC were obtained 
from GTEx V8 version by matching the high-through-
put sequencing data in count format. We then used the 
‘ComBat’ function in the ‘sva’ package to eliminate the 
batch effect in both sets of sequencing data and created 
a new dataset named NGS, including 30 HT and 284 NC 
samples [15]. Further, the validation set was obtained 
from the NCBI database (GEO ID: GSE138198), which 
contained the sequencing data of 13 HT and 3 NC sam-
ples. A total of 2,843 immune-related genes (IRGs) were 
obtained from the ImmPort database ( h t t p  s : /  / w w w  . i  m m 
p  o r t  . o r g  / s  h a r e d / h o m e).

Identification of differentially expressed genes (DEGs)
The differentially expressed HT-related genes in NGS 
were determined by using the ‘limma’ package accord-
ing to the criteria log2 foldchange (FC) > 1 and adjusted 
p < 0.05 [16]. The FC and adjusted p -value were calcu-
lated by the false discovery rate (FDR) procedure and 
the Benjamini-Hochberg method, respectively [11]. The 
‘pheatmap’ and ‘ggplot2’ packages were used to draw the 
heatmap and volcano plots of DEGs, respectively.

Annotation and functional characterization of DEGs
Gene ontology (GO) term enrichment analysis  (   h t t p : / / w 
w w . g e n e o n t o l o g y . o r g     ) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis  (   h t t p s : / / w w w . g e 
n o m e . j p / k e g g /     ) were performed to analyze the biological 
processes and signaling pathways of DEGs by using the 
‘clusterProfiler’ package, respectively [17]. Among them, 
GO annotation of DEGs were categorized into three 
categories: biological process (BP), cellular component 
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(CC), and molecular function (MF). Both GO term and 
KEGG pathway enrichment analyses were performed 
with a threshold of adjusted p < 0.05.

Weighted gene co-expression network analysis (WGCNA)
To identify the highly correlated gene clusters, the 
‘WGCNA’ package was used to generate a signed co-
expression network cluster for filtering NGS dataset [18]. 
Firstly, the ‘pickSoftThreshold’ function was performed 
to calculate an optimal soft-thresholding parameter to 
achieve a scale-free network with an R2 value close to 
0.90. Next, hierarchical clustering analysis was performed 
to transform the adjacency matrix into the topological 
overlap matrix (TOM) and calculate the correspond-
ing dissimilarity. Genes with similar expression profiles 
were classified into the same gene modules by using the 
Dynamic Tree Cut algorithm with a minimum module 
size of 50 and merge CutHeight of 0.25. Finally, the HT 
and NC phenotypes were correlated with the modules, 
and the key modules were significantly associated with 
HT.

Screening potential biomarkers by machine learning
To identify the candidate genes, we used ‘VennDiagram’ 
package to indicate the intersection of DEGs, IRGs, and 
key genes associated with HT [19]. Subsequently, two 
machine learning algorithms (LASSO and RF) were used 
to identify the potential biomarkers. LASSO analysis was 
performed to select important variables in high-dimen-
sional data by using the ‘glmnet’ package with penalty 
parameter and 10-fold cross-validation [20]. In order to 
determine the optimal number of variables, the ‘Random-
Forest’ package was used to calculate the average error 
rate of candidate genes, where the number of trees was 
determined based on the lowest error rate. Then, genes 
with feature importance scores were selected greater 
than 2 [20]. Finally, the intersection genes of LASSO and 
RF algorithms were identified as the potential biomarkers 
of HT.

Subjects and samples for validation of selected mRNA
A total of 24 adult HT patients, including 15 females and 
9 males, and 20 adult age- and sex-matched NC, includ-
ing 13 females and 7 males, were enrolled in the Affili-
ated People’s Hospital of Jiangsu University, which were 
used to verify the screened genes. All HT patients were 
referred to the department of endocrinology, and the 
diagnosis was based on clinical manifestations and aux-
iliary examinations. The clinical features of subjects were 
shown in Table  1. All healthy volunteers were from the 
physical examination center. Individuals with tumors, 
allergies, infectious diseases, acute or chronic visceral 
diseases, or other autoimmune diseases were excluded.

The serum samples were collected by centrifugation 
at 2,000 rpm for 10 min, and then thyroid function was 
determined by an LDX-800 system (Beckman Coulter, 
CA, USA), including free triiodothyronine (FT3), free 
thyroxine (FT4), thyrotropin (TSH), TgAb, and TPOAb.

Quantitative real-time PCR (qRT–PCR)
Fresh human peripheral blood was collected by using 
an EDTA-K2 anticoagulant tube (Becton Dickinson, 
Sparks, USA). Then, the peripheral blood mononuclear 
cells (PBMCs) were separated by lymphocyte separa-
tion medium (Tianjin Haoyang Biological Technology 
Co., Tianjin, China) according to the manufacturer’s 
instructions. The cDNA reverse transcription and qRT–
PCR were performed as previously described [21]. The 
sequences of primers were as follows: Bruton’s tyrosine 
kinase (BTK), sense 5’ –  G C T C A A A A A C G T A A T C C G G 
TACA − 3’; antisense 5’ –  G T C T T C C G G T G A G A A C T C 
C C − 3’; CD19, sense 5’ –  C C C A A G G G G C C T A A G T C A 
T T G – 3’; antisense 5’ –  A A C A G A C C C G T C T C C A T T A 
C C – 3’; β actin, sense 5’ –  C C T G G C A C C C A G C A C A A 
T – 3’; antisense 5’ –  G G G C C G G A C T C G T C A T A C – 3’; 
The relative expression of BTK and CD19 mRNA were 
normalized to β actin.

Receiver operating characteristic (ROC) curves analysis
ROC curves and the area under the curve (AUC) values 
were used to evaluate the diagnostic efficacy of BTK and 
CD19 in the NGS and GSE138198 datasets, which were 
performed by using the ‘pROC’ package [22]. The Y-axis 
represented the true positive rate, indicated by sensitiv-
ity. The X-axis represented the false positive rate, indi-
cated by 100%-specificity%.

Immune cells infiltration analysis
The CIBERSORT algorithm immune cell LM22 gene set 
was used to evaluate the infiltration of 22 immune cells 
in HT and NC samples [23]. The Wilcoxon test was used 
to compare the proportions of immune cells between 
HT and NC samples. The spearman correlation was 

Table 1 Clinical characteristics of HT patients and normal 
controls
Variables HT NC Range P-value
Number 24 20 - -
Gender (M/F) 9/15 7/13 - -
Age (year) 53 ± 16 46 ± 12 - 0.126
FT3 (pmol/liter) 4.83 ± 0.76 4.95 ± 0.56 3.28–6.47 0.538
FT4 (pmol/ liter) 9.36 ± 2.67 9.66 ± 1.28 7.64–16.03 0.646
TSH (uIU/ml) 8.90 ± 12.74 2.27 ± 1.13 0.56–5.91 0.024
TgAb (IU/ml) 244.55 ± 299.99 0.20 ± 0.20 0–4 < 0.001
TPOAb (IU/ml) 888.89 ± 1746.14 0.97 ± 1.03 0–9 < 0.001
HT: hashimoto’s thyroiditis; NC: normal control; M: male; F: female; FT3, free 
triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; TgAb, 
anti-thyroglobulin antibody; TPOAb, anti-thyroid peroxidase antibody. Data 
correspond to the arithmetic mean ± SD



Page 4 of 14Liu et al. BMC Immunology           (2025) 26:11 

performed to determine the correlations between the 
potential biomarkers and immune cells.

Statistical analysis
The unpaired Student’s t-test was used to analyze sig-
nificant differences in the relative expression of BTK 
and CD19 mRNA between HT and NC when variables 
met the normal distribution criteria. The relationships 
between BTK and CD19 mRNA levels in the PBMCs and 
clinical indexes were performed by using Pearson’s corre-
lation coefficient. A p value less than 0.05 was considered 
statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001). 
NS: no significance.

Results
Data processing and identification of DEGs
The process of the study was depicted in Fig. 1. To iden-
tify the DEGs, we merged the raw expression matrices 
of the HRA001684 dataset and the GTEx thyroid data-
set, and filtered them using annotation files to retain 
mRNA genes. Then, we filtered out low-quality expressed 
genes by removing those with a sample proportion of 
zero expression greater than 0.3 in both the HRA001684 
and GTEx thyroid datasets, and then performed a log2 
transformation on the raw gene counts, adding 1 to each 
count to generate log2 (counts + 1) values. We performed 
batch correction and differential analysis using the “sva” 
and “limma” package, respectively (Fig.  2A, B). In total, 

Fig. 1 The flowchart depicting the investigation procedure
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15,426 DEGs were determined between HT patients and 
controls. The volcano plots (Fig.  2C) and hierarchical 
clustering analysis (Fig. 2D) were performed to identified 
significantly dysregulated genes, including 1,055 signifi-
cantly upregulated genes and 346 significantly down-
regulated genes. These results were used for preliminary 
analysis of the sequencing data.

GO and KEGG analysis of DEGs
GO enrichment analysis was performed to determine 
the potential biological functions of DEGs. The top 5 
GO enrichment terms were presented in Fig. 3A. Among 
them, the significantly enriched GO terms of DEGs were 
‘T cell activation’ in BP, ‘extracellular side of the plasma 
membrane’ in CC, and ‘immune receptor activity’ in MF. 
According to KEGG pathway enrichment analysis, a total 
of 24 signaling pathways were significantly associated 
with DEGs. The top 10 KEGG pathways were shown in 

Fig. 2 Data processing and identification of DEGs. (A, B) The raw expression matrices of HRA001684 and merged GTEx dataset before and after batch 
correction, respectively. The volcano plots (C) and heatmaps (D) were used to distinguish the DEGs in terms of fold change. Red and blue represented 
upregulated and downregulated genes, respectively
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Fig. 3 GO and KEGG enrichment analysis of DEGs: (A) The top 5 enriched terms of BP, CC, and MF in the GO enrichment analysis. (B) The top 10 sig-
nificantly KEGG pathways of upregulated genes (left) and all genes (right), respectively. (C) Hierarchical enrichment pathway network plots showing all 
24 enriched KEGG pathways of DEGs, which are divided into four major categories: cellular processes, organismal systems, environmental information 
processing, and human diseases. The size of each circle indicated the number of genes enriched in each pathway, and the larger the circle, the more 
genes were enriched
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Fig. 3B. The KEGG network plots showed all enriched 24 
KEGG pathways of DEGs (Fig.  3C). These 24 pathways 
were subsequently into categorized four major classes: 
cellular processes, organismal systems, environmental 
information processing, and human diseases. The organ-
ismal systems category had the most enriched KEGG 
pathways (Fig.  3C). These data showed that the DEGs 
were closely associate with HT.

Identification of immune-related genes in HT
We performed WGCNA analysis on genes with adjusted 
p < 0.05 in the matrix. To ensure that the interactions 
between the genes maximally conformed to a scale-free 
distribution, the optimal soft threshold (R2 = 0.90) was 
selected as 10 (Fig. 4A). A total of 27 modules were deter-
mined based on a gene clustering tree and a Dynamic 
Tree Cut algorithm (Fig.  4B, C). Then, we analyzed the 
correlation between modules and traits (HT and NC) 
and found that the blue module with 1,454 genes had the 
highest correlation (r = 0.85). Therefore, the 1,454 genes 
were considered to be associated with HT. To further 
identify the core immune-related genes in HT, a Venn 
diagram was performed to indicate the intersection of 
the genes in the blue module, DEGs, and IRGs. Based 
on these, 192 immune-related genes were characterized 
(Fig. 4D).

Machine learning for the selection of immune-related 
biomarkers
Two machine learning algorithms (LASSO and RF) were 
applied to screen feature genes from 192 immune-related 
genes in HT patients. LASSO analysis showed 32 non-
zero coefficient feature genes related to HT (Fig. 5A, B), 
while RF analysis identified 15 feature genes with relative 
importance greater than 2 (Fig. 5C, D). A Venn diagram 
analysis revealed that two shared genes (BTK and CD19) 
meet the requirement for potential immune-related bio-
markers in HT (Fig. 5E).

ROC curve analysis of the selected genes
To evaluate the potential diagnostic value of BTK and 
CD19, we performed ROC curve analysis for BTK and 
CD19 in the NGS dataset and GSE138198 dataset, 
respectively. The AUCs of BTK and CD19 in the NGS 
dataset were 0.98 and 0.99, respectively (Fig.  6A, B). 
While the AUCs of BTK and CD19 were 0.85 and 0.77, 
respectively (Fig. 6C, D). In addition, we found that BTK 
and CD19 were significantly upregulated in HT patients 
in both NGS and GSE138198 datasets (Fig.  6E). These 
data suggested that BTK and CD19 might distinguish 
HT patients from normal controls, and BTK had a higher 
diagnostic value than CD19.

Fig. 4 Identification of immune-related genes. (A) Visualization of the scale-free fit index (left) and the average network connectivity (right) for choosing 
various soft-thresholding powers. (B) The module-trait relationships chart showing the correlations between modules and traits (HT and NC). (C) Module 
dendrogram with different colors representing different modules, and each module contains a group of genes with similar expression. (D) Venn diagram 
showing the intersection of the genes in the blue module, DEGs, and IRGs
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Fig. 6 ROC curve analysis of BTK and CD19. (A, B) ROC curves of BTK and CD19 in NGS dataset. (C, D) ROC curves of BTK and CD19 in GSE138198 dataset. 
(E) Violin plots of relative expression of BTK mRNA and CD19 mRNA. *p < 0.05, ***p < 0.001

 

Fig. 5 Machine learning algorithms for 192 immune-related genes. (A, B) LASSO regression coefficient distribution path and cross-validation curves. (C, 
D) Error rate curves of RF algorithm at different numbers of trees, and genes with relative importance greater than 2. (E) Venn diagram of genes selected 
by LASSO and RF algorithms
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Validation of the selected genes
To further confirm the results of bioinformatic analy-
sis, we verified the relative expression of BTK mRNA 
and CD19 mRNA by using qRT-PCR with an expanded 
sample size. Our data revealed that the transcript lev-
els of BTK were significantly increased in the PBMCs 
of HT patients compared with that in healthy controls 
(Fig.  7A). However, there was no significant difference 
in the relative expression of CD19 mRNA between HT 
and NC groups (Fig.  7B). Then, we also analyzed the 
ROC curves of BTK and CD19. The ROC curve showed 
that BTK could distinguish the HT group from the NC 
group with the AUC was 0.69 (Fig. S1A). However, CD19 
could not distinguish the HT group from the NC group, 
and the AUC was 0.51 (Fig. S1B). These data showed that 
the results of qRT-PCR validation were inconsistent with 
the results of dataset analysis, and BTK might be as the 
potential immune-related biomarkers of HT.

The relationship between BTK expression and clinical 
parameters
To analyze the relationship between BTK and HT, we 
subsequently assessed the correlation between BTK 
expression and the clinical parameters of HT. Our results 
revealed that transcript levels of BTK were significantly 
positively correlated with the serum levels of TgAb 
(r = 0.4241; p = 0.0389) (Fig.  8D) and TPOAb (r = 0.5810; 
p = 0.0029) (Fig.  8E), but not with the serum levels of 
FT3 (r = -0.0849; p = 0.6932) (Fig.  8A), FT4 (r = 0.0686; 
p = 0.7500) (Fig.  8B), and TSH (r = -0.0309; p = 0.8861) 
(Fig.  8C). These data suggested that increased BTK 
expression was associated with the autoantibody levels of 
HT patients.

Correlation analysis between BTK and immune cells
To investigate the potential biological function of BTK, 
we first analyzed the infiltration of immune cells in HT. 
CIBERSORT algorithm was used to determine the pro-
portions of 22 immune cells in NGS dataset. Wilcox tests 
were used to compare the proportions of immune cells 
between HT and NC groups. We found that the propor-
tions of immature B cells, plasma cells, memory B cells, 
M1 macrophages, CD8+ T cells, activated memory CD4+ 
T cells, T follicular helper cells, and resting mast cells 
were significantly increased in HT, while the proportions 
of eosinophils, M0 macrophages, monocytes, activated 
NK cells, and immature CD4+ T cells were significantly 
decreased compared with healthy individuals (Fig.  9B). 
Moreover, M0 macrophages showed the most significant 
negative correlation with M2 macrophages, while acti-
vated NK cells showed the most significant positive cor-
relation with resting mast cells (Fig.  9A). These results 
showed that there was an imbalance of immune cells in 
HT.

To further investigate the relationship between BTK 
and immune cells, we performed the correlation analysis 
between BTK expression and the proportions of immune 
cells in the HT group. The data showed that BTK expres-
sion was positively correlated with M2 macrophages, 
plasma cells, and M1 macrophages, and negatively cor-
related with M0 macrophages, activated NK cells, and 
eosinophils (Fig.  10). These results showed that BTK 
might be involved in the pathogenesis of HT by regulat-
ing immune cells.

Discussion
As a common organ-specific autoimmune thyroid dis-
ease, the laboratory diagnostic indicators of HT are 
easily confused with other thyroid diseases [24, 25]. 
Moreover, the underlying mechanisms of HT are not 

Fig. 7 Validation of the transcript levels of BTK and CD19. (A) The relative expression of BTK mRNA in the PBMCs from HT patients (n = 24) and normal 
controls (n = 20). (B) The relative expression of CD19 mRNA in the PBMCs from HT patients (n = 24) and normal controls (n = 20). Each data point represents 
an individual subject, and the horizontal lines show the mean. *p < 0.05, NS: no significance
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broadly known. Hence, identifying novel checkpoints 
and investigating their roles are essential for finding new 
diagnostic and therapeutic targets for HT. Although pre-
vious studies have reported a number of potential bio-
markers associated with HT (e.g. noncoding RNA), the 
methods of these studies were single and ROC curve 
analysis was only performed on screened molecules [8, 
26, 27]. In the present study, a total of 1,401 observably 
dysregulated genes were identified between HT group 
and NC group by using the public databases. Unlike the 
previous analysis of individual database, we performed 
the same consistent data processing pipeline to integrate 
the original sequencing data from different databases 
into a new dataset. The benefit of this approach was to 
ensure the consistency in gene annotation, filtering, and 
counting methods between the two databases. Moreover, 
we analyzed the potential biological functions of these 
DEGs. According to GO enrichment analysis of these 
DEGs, we found that the DEGs were mainly related to 
immune cells differentiation, activation, and interaction, 
which may be involved in the process of HT. Among the 
24 signaling pathways analyzed by KEGG enrichment, 
the ‘JAK-STAT signaling pathway’, T cell receptor sig-
naling pathway’, and ‘B cell receptor signaling pathway’ 
have been reported to be involved in the immune dis-
order of HT [9, 24]. Intriguingly, there was no statistical 

significance in downregulated genes enriched signaling 
pathways. A possible explanation for this phenomenon is 
that few downregulated genes have been identified in HT 
patients. These findings demonstrated that the pathogen-
esis of HT may be primarily driven by the upregulated 
genes.

To date, there were no specific markers for the diag-
nosis of HT. The role of immune-related biomarkers in 
immune-related adverse events has recently come into 
the spotlight with the publication of a number of stud-
ies in the past few years [28, 29]. To further investigate 
the immune-related biomarkers of HT, we used WGCNA 
analysis to determine the module most relevant to HT 
patients and focused on analyzing the genes overlapping 
with DEGs and immune-related genes in that module. 
Then, two machine learning methods were performed 
to analyze these overlapping genes, ultimately identify-
ing two potential biomarkers, BTK and CD19, that were 
associated with HT. Bioinformatics analysis showed that 
BTK and CD19 were significantly upregulated in HT 
group. ROC diagnostic curves revealed that these two 
biomarkers have high diagnostic efficacy for HT diag-
nosis. Intriguingly, there was only BTK was significantly 
upregulated in HT patients with the potential diagnosis 
valuable showing in ROC curve analysis in the subse-
quent validation experiments. One possible explanation 

Fig. 8 The relationship between BTK expression and clinical parameters. Pearson’s correlation analysis was performed to assess the correlation between 
the relative expression of BTK and the serum levels of FT3 (A), FT4 (B), TSH (C), TgAb (D), and TPOAb (E). Each data point represents an individual subject
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Fig. 9 Immune infiltration analysis of NGS dataset. (A) Radar plots showing the proportions of 22 immune cells in HT and NC groups, with the size of 
outer circle indicating the magnitude of the differences. Orange and blue represented significantly increased and decreased immune cells in HT group, 
respectively (p < 0.05). The inner curves showing the correlation between immune cells with significant positive correlation in red and significant negative 
correlation in blue. (B) Violin plots showing the proportions of 22 immune cells in HT and NC groups from NGS dataset
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for the inconsistent data between validation and bioinfor-
matics analysis is that the samples were sourced from dif-
ferent parts of the body. The samples for bioinformatics 
analysis were derived from thyroid tissues, while the sam-
ples for validation were derived from PBMCs. Another 
possible explanation for this phenomenon is that the 
sample size included for verification might be insuffi-
cient. There data suggested that elevated BTK expression 
might be as a potential biomarker of HT.

BTK, belonged to the Tec family of protein tyrosine 
kinases, is a non-receptor cytoplasmic tyrosine kinase. It 
is expressed in hematopoietic cells excluded T cells and 
natural killer cells [30]. As a key enzyme of B-cell recep-
tor signaling, BTK activation is essential for B-cell pro-
liferation, survival, differentiation, and trafficking [31, 
32]. Meanwhile, BTK can induce the polarization of M1 
macrophages by responding to bacterial lipopolysac-
charide stimulation [33, 34]. In addition, BTK inhibitors 
have been used in the treatment of B -cell malignancies 
[35]. However, the potential role of BTK in HT remains 
enigmatic. As expected, the infiltration proportions of 
immature B cells, plasma cells, memory B cells, and M1 

macrophages were significantly increased in HT patients 
by CIBERSORT algorithm. Combining the relationship 
between BTK expression and the proportions of immune 
cells, BTK was associated with the imbalance of plasma 
cells and M1 macrophages in HT. Taken together, these 
findings suggest that BTK expression may be associated 
with an imbalance of plasma cells and M1 macrophages 
in HT.

Given the potential role of BTK in HT, we analyzed the 
relationship between BTK and thyroid function param-
eters. Interestingly, the transcript levels of BTK were 
positively correlated with the serum levels of TgAb and 
TPOAb, which are produced by plasma cells in response 
to antigen stimulation. Furthermore, BTK kinase inhibi-
tors have shown efficacy in clinical trials for various auto-
immune diseases, supporting the notion that BTK plays 
a pivotal role in mediating pathogenic processes [36]. 
The effects of BTK inhibition in lupus and rheumatoid 
arthritis suggested that it may be a good target for con-
trolling autoreactive B cells [37]. Together, we speculate 
that BTK may play a role in the pathogenesis of HT by 
influencing plasma cell activity. However, there are some 

Fig. 10 Correlation analysis between BTK expression and immune cells in the HT group from NGS dataset
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limitations in the study. The sample size for verifying 
the levels of BTK and CD19 was too small. HT patients 
are more common in Whites and Asians than in Afri-
can Americans [38]. However, the verified samples in the 
study were conducted among the Chinese Han popula-
tion, which could not reflect all ethnic groups. In addi-
tion, we only conducted a preliminary analysis of the HT 
datasets to investigate the relationship between BTK and 
plasma cells. The detailed mechanisms need to be further 
investigated with large cohorts of different regions, race 
and ethnicity and in vitro and in vivo experiments.

Conclusion
Collectively, we integrated existing publicly available 
transcriptomic data of HT and performed various bioin-
formatic methods to identify immune-related molecular 
markers of HT. BTK was ultimately screened as a poten-
tial immune-related biomarker of HT, which might be 
involved in the pathogenesis of HT by regulating plasma 
cells.
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