
Huang et al. BMC Immunol           (2021) 22:72  
https://doi.org/10.1186/s12865-021-00463-3

RESEARCH

Dimethyl itaconate alleviates the pyroptosis 
of macrophages through oxidative stress
Shan‑Shan Huang1, Dong‑Yang Guo2, Bing‑Bing Jia2, Guo‑Long Cai2, Jing Yan2*, Yan Lu2* and Zhou‑Xin Yang2* 

Abstract 

Macrophages are involved in the pathophysiology of many diseases as critical cells of the innate immune system. 
Pyroptosis is a form of macrophage death that induces cytokinesis of phagocytic substances in the macrophages, 
thereby defending against infection. Dimethyl itaconate (DI) is an analog of itaconic acid with anti‑inflammatory 
effects. However, the effect of dimethyl itaconate on macrophage pyroptosis has not been elucidated clearly. Thus, 
the present study aimed to analyze the effect of DI treatment on a macrophage pyroptosis model (Lipopolysaccha‑
ride, LPS + Adenosine Triphosphate, ATP). The results showed that 0.25 mM DI ameliorated macrophage pyroptosis 
and downregulated interleukin (IL)‑1β expression. Then, real‑time quantitative polymerase chain reaction (RT‑qPCR) 
was used to confirm the result of RNA‑sequencing of the upregulated oxidative stress‑related genes (Gclc and Gss) 
and downregulated inflammation‑related genes (IL-12β and IL-1β). In addition, Gene Ontology (GO) enrichment 
analysis showed that differential genes were associated with transcript levels and DNA replication. Kyoto encyclope‑
dia of genes and genomes (KEGG) enrichment showed that signaling pathways, such as tumor necrosis factor (TNF), 
Jak, Toll‑like receptor and IL‑17, were altered after DI treatment. N‑acetyl‑L‑cysteine (NAC) reversed the DI effect on 
the LPS + ATP‑induced macrophage pyroptosis and upregulated the IL‑1β expression. Oxidative stress‑related protein 
Nrf2 is involved in the DI regulation of macrophage pyroptosis. Taken together, these findings suggested that DI alle‑
viates the pyroptosis of macrophages through oxidative stress.
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Background
Macrophages are essential cells of the innate immune 
system and play critical roles in the diseases such as sep-
sis [1]. Pyroptosis is cell death but distinct from apoptosis 
and necrosis. It is a general and natural immune effector 
mechanism, contributing to the inflammatory reaction 
in bacterial infections and various noninfectious diseases 
[2–4]. It is characterized by cell swelling, the formation 
of holes in the plasma membrane, and the release of pro-
inflammatory cytokines, including interleukin (IL)-1β 
and IL-18. Thus, the process of pyroptosis exerts a dual 

effect: it protects the body from microbial infections and 
endogenous hazards, while excessive activation of pyrop-
tosis leads to pathological inflammation [5]. Previous 
studies [6–8] have shown that macrophage pyroptosis is 
involved in the development of sepsis and that the regu-
lation of the process pyroptosis may offer novel therapeu-
tic approaches to sepsis.

Itaconic acid is a metabolite produced by the acti-
vation of immune cells, especially macrophages. The 
primary effect of the acid on the cellular metabolism 
during macrophage activation has been attributed to the 
inhibition of succinate dehydrogenase (SDH) [9, 10]. In 
addition, itaconic acid attenuates reperfusion injury by 
SDH and induces an antioxidant stress response [11]. 
It has a variety of anti-inflammatory, antioxidant, and 
immunomodulatory effects [12]. Itaconic acid and its 
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membrane-permeable derivative, dimethyl itaconate 
(DI), selectively inhibit a subset of cytokines [9], includ-
ing IL-6 and IL-12. A recent study showed that DI 
enhanced the survival rate, decreased the serum level of 
tumor necrosis factor-alpha (TNF-α) and IL-6, and ame-
liorated lung injury in septic mice. DI also suppressed the 
lipopolysaccharide (LPS)-induced production of TNF-α, 
IL-6, and nitric oxide synthase 2 in bone marrow-derived 
macrophages (BMDMs) [13].

Oxidative stress refers to the imbalance of oxidation 
and antioxidation in the body under the attack of harmful 
stimulating factors [14]. Moreover, cardiovascular, neu-
rodegenerative, metabolic, and inflammatory diseases are 
known to be associated with oxidative stress [15], and the 
resulting reactive oxygen species (ROS) is considered to 
be the driving force of pyroptosis [16]. A study revealed 
that mitochondrial ROS promote macrophage pyroptosis 
by inducing gasdermin-D oxidation [17].

However, the role and mechanism of DI on mac-
rophages pyroptosis have not yet been clarified. There-
fore, in this study, the role and mechanism of DI on 
macrophage pyroptosis was analyzed by LPS + Adeno-
sine Triphosphate (ATP)-induced pyroptosis model of 
BMDMs from C57BL/6 mice pretreated with DI.

Methods
BMDM isolation, culture, and treatment
Male C57BL/6 mice aged 6–8-weeks-old were purchased 
from Zhejiang Academy of Medical Sciences, Hang-
zhou, China. Following euthanasia by cervical disloca-
tion, the lack of heartbeat was confirmed in each animal 
in accordance with the approved Zhejiang Academy of 
Medical Sciences protocol. BMDMs from the bilateral 
posterior femur of mice were rinsed using the DMEM 
(Genom, Hangzhou, China) medium. BMDMs were cul-
tured in DMEM media supplemented with 50  ng/mL 
mouse recombinant macrophage colony-stimulating fac-
tor, 10% fetal bovine serum (FBS), penicillin (100 U/mL), 
and streptomycin (100 µM) in a humidified atmosphere 
containing 5%  CO2 at 37 °C. After 7 days of culture, the 
cells were divided into different groups as follows: vehi-
cle; DI (0.25  mM, Sigma, USA) + vehicle; Dimethyl sul-
foxide (DMSO, Sigma, USA) + LPS (500 ng/mL, for 4 h, 
Sigma, USA) + ATP (5  mM, for 1  h, Sigma, USA); DI 
(0.25 mM, pre-treatment for 2 h) + LPS + ATP; N-acetyl-
L-cysteine (NAC, 1 mM, Sigma, USA) or ML385(10 µM, 
Selleck, China), DI (0.25  mM, con-treatment for 
2 h) + LPS + ATP. The concentrations were performed as 
described [18, 19]. The Ethics committee of the Zhejiang 
Academy of Medical Sciences approved the experimental 
protocol. All animal experiments met the ARRIVE guide-
lines [20].

Cell viability assay
For cell viability assay, 5 ×  103 cells/well were seeded 
in 0.1  mL of DMEM supplemented with 10% FBS in a 
96-well plate and cultured for 24 h, followed by treatment 
with a gradually increased concentration of DI (0.03125, 
0.0625,0.125 and 0.25  mM) for 24  h. Then, 10 µL cell 
counting kit-8 (CCK-8,7Sea Pharmatech Co.Ltd., Shang-
hai, China) was added to each well and incubated at 37 °C 
for an additional 2  h. The absorbance was measured at 
450  nm on a microplate reader (Thermo Scientific, San 
Jose, CA, USA).

Propidium iodide (PI)‑stained fluorescence microscopy
The cell mortality in each group was assessed via PI (BD 
Biosciences, USA) staining. The cells were incubated in a 
six-well plate at the density of 5 ×  105 cells/mL. The dif-
ferent groups were treated as described above and then 
incubated with 5 µL of PI for 10 min at room temperature 
in the dark. Subsequently, the cells were examined under 
an inverted fluorescence microscope (Nikon, Japan). Red 
presented PI-positive cells.

Enzyme‑linked immunosorbent assay (ELISA)
Cell-free supernatants were collected from each group 
and stored at – 80  °C. ELISA kits (Thermo Scientific, 
USA) for IL-1β was utilized following the manufacturer’s 
protocol.

ROS detection
The level of ROS in DI + LPS + ATP group and 
NAC + DI + LPS + ATP group were detected by the 
dichlorodihydrofluorescein diacetate (DCFH-DA, Beyo-
time, China). Briefly, the cells were cultured in 96-well 
plates, treated as the previously described and incubated 
with 10 µM DCFH-DA for 30 min at 37 °C. After wash-
ing with DMEM thrice, the fluorescence intensity of 
ROS was detected with a fluorescence microplate reader 
(Thermo Scientific, San Jose, CA, USA) at 488 nm exci-
tation wavelength and 520 nm emission wavelength. The 
concentration of ROS was expressed as fluorescence 
value.

Real‑time quantitative polymerase chain reaction 
(RT‑qPCR) for mRNA expression
Total RNA was extracted from each group using the RNA 
Rapid Extraction Kit (Yishan, Biotechnology, Shang-
hai, China) and reverse transcribed into complemen-
tary DNA (cDNA) using the ReverTra-Ace-qPCR-RT 
kit (Toyobo Corporation, Osaka, Japan). Subsequently, 
qRT-PCR was performed using the SYBR green real-time 
PCR master mix (Toyobo) on a LightCycler 480 (Roche, 
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Germany). GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) served as an internal control. The primers 
used are listed in Table 1.

Library construction and sequencing
Total RNA was extracted from DMSO + LPS + ATP and 
DI + LPS + ATP groups using TRIzol (Thermo Fisher, 
USA). The experiments were performed in independent 
cultures from three mice. The mRNA was specifically 
captured using Dynabeads Oligo (dT) 25-61005 (Thermo 
Fisher, USA) and fragmented using NEBNext®UltraTM 
RNA Library Prep Kit for Illumina® (NEB, USA). cDNA 
was synthesized and constructed in the presence of 
reverse transcriptase (Invitrogen SuperScript™IIReverse 
Transcriptase, USA) library and sequenced. The pro-
cessed clean data were aligned to the reference genome, 
and the expression was annotated and quantified using 
StringTie (2016) and gffcompare. Finally, gene expression 
obtained as fragments per kilobase of exon model per 
million mapped readsexon fragments (FPKM) was evalu-
ated using ballgown.

Analysis of differential transcripts
The differentially expressed mRNAs were selected with 
fold-change > 2 or fold-change < 0.5 and P-value < 0.05 

using R package edgeR or DESeq2, followed by Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses to 
identify the differentially expressed mRNAs.

GO functional class and pathway enrichment analysis
The GO database reflects the distribution of the num-
ber of differentially significant genes on the GO term 
enriched in biological process, cellular component, and 
molecular function in the form of bar charts. KEGG is 
a database for the systematic analysis of correlations 
between genes and their coding products, gene function, 
and genomic information [21]. Also, pathways signifi-
cantly enriched in expressed genes were identified.

Statistical analysis
Data were processed using GraphPad Prism version 
7 and presented as mean ± standard deviation (SD), 
unless stated otherwise. The multigroup comparisons of 
means were carried out by one-way analysis of variance 
(ANOVA) test, with post hoc contrasts performed using 
Tukey’s multiple comparisons test. Paired t-test was used 
for comparison between groups. P < 0.05 indicated a sta-
tistically significant difference.

Results
Effect of DI on BMDM cell viability
The BMDM cells were treated with different concentra-
tions of DI (0.03125, 0.0625, 0.125, and 0.25  mM) for 
24 h. The CCK-8 assay showed that DI-treated groups did 
not differ in cell viability compared to the vehicle group 
(P > 0.05, Fig. 1).

DI ameliorated cell mortality of BMDMs activated 
by LPS + ATP
The cell mortality of each group was detected by stain-
ing the cells with PI (Fig.  2a). As shown in Fig.  2b, 

Table 1 Target primer sequences

Target Primer sequences

Gclc forward 5′‑GGG GTG ACG AGG TGG AGT A‑3′

Gclc reverse 5′‑GTT GGG GTT TGT CCT CTC CC‑3′

Ednrb forward 5′‑GAA CAA GTG CAT GCG AAA CG‑3′

Ednrb reverse 5′‑ACT CAG CAC AGT GAT TCC CA‑3′

Gss forward 5′‑AGA CCA AAG AAG CTT CCA AGAT‑3′

Gss reverse 5′‑ACC GCA TTA GCT GAG CCA TA‑3′

Acss2 forward 5′‑GAC CAC CAA GAT CAC ATA CC‑3′

Acss2 reverse 5′‑TTC TGA ATG CCC TGT TTA CG‑3′

Layn forward 5′‑CAC ATC ACA GTT TAG GAA CTGG‑3′

Layn reverse 5′‑GAT GGC TGA TGG TAC ATG AC‑3′

Edn1 forward 5′‑TCT CTC TGC TGT TTG TGG CT‑3′

Edn1 reverse 5′‑CCA GGT GGC AGA AGT AGA CA‑3′

Fscn1 forward 5′‑AAC ATC AAA GAC TCC ACG G‑3′

Fscn1 reverse 5′‑AAG GAA GAA ATC CAC AGG G‑3′

IL-12β forward 5′‑GGA AGC ACG GCA GCA GAA TA‑3′

IL-12β reverse 5′‑AAC TTG AGG GAG AAG TAG GAA TGG ‑3′

IL-1β forward 5′‑GCA ACT GTT CCT GAA CTC AACT‑3′

IL-1β reverse 5′‑ATC TTT TGG GGT CCG TCA ACT‑3′

Saa3 forward 5′‑TGC CAT CAT TCT TTG CAT CTTGA‑3′

Saa3 reverse 5′‑CCG TGA ACT TCT GAA CAG CCT‑3′

GAPDH forward 5′‑ATC AAC GAC CCC TTC ATT GACC‑3′

GAPDH reverse 5′‑CCA GTA GAC TCC ACG ACA TAC TCA GC‑3′

Fig. 1 Effect of DI on BMDM cell viability. DI (0.03125, 0.0625, 0.125 
and 0.25 mM) was added to cells, and the cell viability was detected 
after 24 h by CCK‑8 Vs. Vehicle group; ns: not significant, P > 0.05)
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the cell mortality of DMSO + LPS + ATP group 
was 50.27 ± 3.70% compared to the vehicle group 
was 2.97 ± 0.13%, indicating a significant increase 
(****P < 0.0001), while that of the DI treatment group was 
28.80 ± 2.30% compared to the DMSO + LPS + ATP 
group, indicating a significant decrease (####P < 0.0001).

DI decreased the level of IL‑1β in BMDMs
The level of IL-1β in BMDMs was detected by ELISA 
and RT-qPCR. As shown in Fig. 3a, LPS + ATP-induced 
pyroptosis of BMDMs increased the serum levels of 
IL-1β, while DI treatment reduced the concentration 
of IL-1β. Similarly, DI treatment decreased the mRNA 
expression of IL-1β (Fig.  3b). These findings demon-
strated that DI decreases the level of IL-1β in BMDMs.

mRNA sequencing of DI treatment on the LPS + ATP 
induced pyroptosis in BMDMs
The comparative analysis of two groups was based on 
mRNA sequencing that identified 2040 differentially 
expressed genes (DEGs), including 983 upregulated 
and 1057 downregulated genes (Fig.  4a/b). The top five 
upregulated DEGs with the highest significance were 
Gclc, Ednrb, Gss, Acss2, and Layn, and the top five down-
regulated DEGs with the highest significance were Edn1, 
Fscn1, IL-12β, IL-1β, and Saa3. In Fig.  4c, FPKM was 
used from mRNA sequencing results (Additional file  1: 
Table S1). Real-time PCR was used to verify the expres-
sion of these genes (Fig. 4d), indicating that the expres-
sion trends of these ten genes were consistent with the 
sequencing results. All the data were statistically signifi-
cant (*P < 0.05).

Fig. 2 Effect of DI on cell mortality of BMDMs induced by LPS + ATP. 
a The cell mortality was observed by fluorescence microscopy after 
PI staining. b The cell number was quantified by counting in three 
random at 10×, and the mortality was expressed as mean ± standard 
error of the mean (SEM) (n = 3 per group, ****P < 0.0001 compared to 
the vehicle group; ####P < 0.0001 compared to the DMSO + LPS + ATP 
group)

Fig. 3 Effect of DI on IL‑1β in BMDMs with LPS + ATP‑induced pyroptosis. The concentration of IL‑1β was detected by ELISA (a) and mRNA level 
was assessed by real‑time PCR (b). (n = 3 per group, ****P < 0.0001 compared to the vehicle group; ####P < 0.0001 compared to the DMSO + LPS + ATP 
group)
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Fig. 4 a Volcanic plots of sequencing results. b RNA‑seq cluster analysis (abscissa: samples from different groups, ordinate: differential transcripts). 
c FPKM of sequencing results. d. Verification of mRNA expression of Gclc, Ednrb, Gss, Acss2, Layn, Edn1, Fscn1, IL-12β, IL-1β, and Saa3 by real‑time PCR 
(**P < 0.005, ***P < 0.001)
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GO enrichment of DEGs after DI treatment
In Fig.  5, the GO enrichment for the biological process 
of the enriched genes was signal transduction, biologi-
cal process, regulation of transcription, DNA-templated, 

positive regulation of transcription by RNA polymer-
ase II, and cell differentiation. Notably, DEGs were also 
enriched in the oxidation–reduction in the biological 
process. The GO enrichment for the cellular component 

Fig. 4 continued

Fig. 5 GO enrichment of genes after DI pre‑treatment (abscissa: Number of genes, ordinate: GO‑term)
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of mainly enriched genes was membrane, cytoplasm, 
nucleus, an integral component of the membrane, and 
cytosol. The GO enrichment for molecular function of 
mainly enriched genes was protein binding, metal ion 
binding, molecular function, identical protein binding, 
and nucleotide-binding.

KEGG enrichment of genes after DI treatment
KEGG enrichment was used to explore the changes in 
the pathway after DI treatment. The KEGG enrichment 
of mainly enriched genes was cytokine-cytokine recep-
tor interaction, malaria, fluid shear stress, and athero-
sclerosis, TNF signaling pathway, and Jak-STAT signaling 
pathway (Fig. 6). Thus, DI mainly affects the expression of 
inflammatory signaling pathways.

NAC reversed DI effect on the LPS + ATP‑induced 
pyroptosis of BMDMs
Based on the sequencing results, we found that DI sig-
nificantly upregulated the oxidation–reduction-related 
genes (Gclc and Gss), and the differential genes in GO 
analysis were also enriched in the biological process 
of oxidation–reduction. Therefore, we speculated that 

the oxidation–reduction process plays an essential 
role in the effect of DI; hence, we treated DI-induced 
macrophage pyroptosis with NAC. Next, we detected 
cell mortality by staining cells with PI (Fig.  7a) and the 
level of ROS by the DCFH-DA in DI + LPS + ATP and 
NAC + DI + LPS + ATP groups (Fig.  7c). As shown in 
Fig.  7b, the cell mortality of the NAC + DI + LPS + ATP 
group (43.5 ± 0.64%) was significantly increased 
compared to that of the DI + LPS + ATP group 
(27.67 ± 0.41%), (####P < 0.0001). And the level of ROS 
in the NAC + DI + LPS + ATP group was significantly 
decreased compared to that of the DI + LPS + ATP 
group (##P < 0.005). Then, the expression of IL-1β in 
BMDMs was detected by ELISA (Fig.  7d). Compared 
to the DI + LPS + ATP group, the level of IL-1β in the 
NAC + DI + LPS + ATP group increased significantly. 
These findings proposed that NAC reversed the DI effect 
on the LPS + ATP-induced pyroptosis of BMDMs.

ML 385 reversed DI effect on the LPS + ATP‑induced 
pyroptosis of BMDMs
Among upregulated DEGs with the highest significance, 
genes like Gss, Gclc and Hmox1 [22, 23], were suggested 

Fig. 6 KEGG enrichment of genes after DI treatment (abscissa: pathway name, ordinate: rich factor, higher rich factor value, and pathway 
enrichment)
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to be regulated by the transcription factor NF-E2-related 
factor 2 (Nrf2), an important transcription factor that 
in response of the cellular oxidative stress. Thus, we co-
treated macrophage pyroptosis model with ML385 (Nrf2 
inhibitor) and DI. As shown in Fig.  8, ML385 similarly 
reversed the cell mortality (****P < 0.0001) and the level of 
IL-1β (***P < 0.0005) of DI effect on macrophage pyrop-
tosis. In summary, these results indicated that oxidative 
stress-related protein Nrf2 is involved in the DI regula-
tion of macrophage pyroptosis.

Discussion
In the current study, we demonstrated that DI improves 
the cell mortality of LPS + ATP-induced macrophage 
pyroptosis and reduces the inflammatory factor IL-1β, 
while NAC could reverse this protective effect. We also 
used high-throughput sequencing to investigate the DI-
treated macrophage pyroptosis and pyroptosis model and 
found that the upregulated differential genes (Gclc and 
Gss) were mainly associated with oxidation–reduction, 
while the downregulated differential genes (IL-1β and 
IL-12β) were associated with inflammatory responses. 
In the GO and KEGG enrichment analyses, we found 
that DI affects the biological process, including oxida-
tion–reduction and the inflammatory signaling pathway. 

Besides, we also found that oxidative stress-related pro-
tein Nrf2 is involved in the DI regulation of macrophage 
pyroptosis. Thus, DI upregulated Gss and Gclc at the 
transcriptional level activating the antioxidant stress 
response and decreasing the level of IL-1β, thereby inhib-
iting macrophage pyroptosis.

Macrophage pyroptosis is involved in various 
inflammation-related diseases, such as psoriasis [24], 
osteoarthritis [25], and sepsis [8], and the associated 
inflammatory response can be attenuated by inhibiting 
macrophage pyroptosis. Some studies have shown that 
the regulation of macrophage pyroptosis mainly consists 
of Caspase-1-dependent classical pyroptosis pathways 
and non-Caspase-1-dependent non-classical pyroptosis 
pathways, which are complex signaling pathways. Moreo-
ver, the Keap1/Nrf2/HO-1 pathway can prevent pulmo-
nary ischemia–reperfusion injury by reducing oxidative 
stress and promoting the antioxidant enzyme activity 
to inhibit alveolar macrophage pyroptosis [26]. In addi-
tion, the inhibition of the TNF-α/HMGB1 inflammatory 
signaling pathway suppresses macrophage pyroptosis to 
improve liver and kidney function during acute kidney 
injury and acute liver failure [27].

Macrophage pyroptosis is one of the ways of mac-
rophage death, in addition to apoptosis and necrosis. A 

Fig. 7 Effect of NAC on DI treatment of LPS + ATP‑induced pyroptosis of BMDMs. a Cell mortality was observed by fluorescence microscopy 
after PI staining. b The cell number was quantified by counting in three random at 10×, and the mortality was expressed as mean ± SEM. c The 
concentrations of ROS were detected by the DCFH‑DA and expressed as fluorescence value. d The concentration of IL‑1β was detected by ELISA. 
(n = 3 per group, ##P < 0.005, ####P < 0.0001 compared to the DI + LPS + ATP group)
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previous study showed that high dose itaconate surro-
gate 4-octyl itaconate (4-OI) induces apoptotic cell death 
independently of the classical inflammasome pathway 
[28]. Currently, there are no studies to confirm the asso-
ciation of DI with apoptosis and necrosis. It has been 
demonstrated that itaconic acid inhibits the activation 
of NLRP3 inflammasome in macrophage and reduces 
the level of IL-1β, which is negatively correlated with the 
level of intracellularly accumulated itaconic acid. DI is a 
cell-permeable itaconic acid analogue that is not metabo-
lized to itaconic acid intracellularly, but has a strong elec-
trophilicity and can downregulate the level of IL-1β [29]. 
The current study also confirmed that DI reduces IL-1β 
levels and alleviates cell death in macrophage pyroptosis. 
Nonetheless, additional studies are required to further 
investigate whether DI is associated with apoptosis and 
necrosis in the future.

Among the differentially upregulated genes, Gclc and 
Gss, were associated with redox response. Gclc and Gss 

are also key enzymes for glutathione synthesis (GSH). It 
has an antioxidant effect that maintains the stability of 
cell redox and avoids mass cell death [17]. Among the 
differentially downregulated genes, IL-1β and IL-12β are 
inflammatory factors. IL-1β is an upstream pro-inflam-
matory cytokine, and some studies reported that block-
ing IL-1β also reduces immunosuppression [30], which 
results in late sepsis. IL-12β is a cytokine of the IL-12 
family and a key pro-inflammatory cytokine produced by 
macrophages [31]. Therefore, DI may further improve the 
inflammatory response to sepsis by increasing the level 
of anti-oxidative stress-related factors and decreasing the 
expression of inflammatory factors in macrophages at the 
transcriptional level.

In addition, differentially enriched genes in GO 
enrichment analysis of biological processes include 
oxidation–reduction process. Next, we compared cell 
deaths and IL-1β levels in the DI + LPS + ATP and 
NAC + DI + LPS + ATP groups by PI staining and ELISA 

Fig. 8 Effect of ML385 on DI treatment of LPS + ATP‑induced pyroptosis of BMDMs. a Cell mortality was observed by fluorescence microscopy 
after PI staining. b The cell number was quantified by counting in three random at 10×, and the mortality was expressed as mean ± SEM. c The 
concentration of IL‑1β was detected by ELISA. (n = 3 per group, ***P < 0.005, ****P < 0.0001 compared to the DI + LPS + ATP group)
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and found that the number of cell deaths and the level of 
IL-1β was increased by NAC + DI co-treatment. NAC 
is an antioxidant, and in the presence of redox-active 
transition metals, it causes biological damage via thiol 
oxidation by the metal ion followed by the generation of 
superoxides,  H2O2 and •OH. NAC exerts diverse, com-
plex effects that are largely associated with maintaining 
the levels of intracellular glutathione (GSH) [32]. Besides, 
studies [22, 23] showed that Nrf2 could regulate genes, 
like Gss, Gclc and Hmox1. We used Nrf2 inhibitor and DI 
to co-treat the macrophage pyroptosis model, and found 
that it has a similar effect to NAC. In our study, we found 
that NAC reduced the level of ROS in the DI + LPS + ATP 
group and reversed DI effect on macrophage pyroptosis, 
and oxidative stress-related protein Nrf2 is involved in 
the DI regulation of macrophage pyroptosis.

Several studies have shown that DI modulates different 
signaling pathways to exert effects. DI protects against 
fungal keratitis by activating the Nrf2/HO-1 signaling 
pathway [33]. It also prevents LPS-induced mastitis by 
activating MAPK and Nrf2 and inhibits the NF-κB sign-
aling pathway [34] and LPS-induced endometritis by sup-
pressing the TLR4/NF-κB and activating the Nrf2/HO-1 
signaling pathway [35]. The immunomodulatory effects 
of dimethyl chlortetracycline on IL-17-IκBς axis-induced 
inflammation were observed in an animal model of 
imiquimod-induced psoriasis [19]. In this study, KEGG 
enrichment analysis suggested a significant effect of DI 
on many signaling pathways such as TLR, IL-17, and 
PI3K-AKT, which are involved in the regulation of oxida-
tive stress processes. Therefore, DI alleviates macrophage 
pyroptosis, the underlying mechanism is related to the 
oxidative stress response, but whether it is related to 
these signaling pathways needs to be investigated further.

Conclusions
Taken together, DI alleviates the pyroptosis of mac-
rophages through oxidative stress, which provides an 
experimental basis for the regulation of sepsis pyropto-
sis and a theoretical basis for anti-inflammation and sup-
pression of oxidativess stress in clinical sepsis.
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protein 1; IL‑12β: Interleukin‑12 beta; IL‑1β: Interleukin‑1 beta; Saa3: Serum 
amyloid A 3; Gclc: Glutamate‑cysteine ligase catalytic subunit; Ednrb: Endothe‑
lin receptor type B; Gss: Glutathione synthetase; Acss2: Acetyl‑CoA synthetase 
2; Layn: Layilin; TNF: Tumor necrosis factor; Hmox1: Heme oxygenase 1; SD: 
Standard deviation; ROS: Reactive oxygen species; 4‑OI: 4‑Octyl itaconate; 
Nrf2: NF‑E2‑related factor 2; DEGs: Differentially expressed genes.
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