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The inhibitory receptor Tim-3 fails to
suppress IFN-γ production via the NFAT
pathway in NK-cell, unlike that in CD4+ T
cells
Xiaowen Yu1,2†, Bin Lang1,2†, Xi Chen1,3†, Yao Tian1,4†, Shi Qian1,2, Zining Zhang1,2, Yajing Fu1,2, Junjie Xu1,2,
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Abstract

Background: T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is a negative regulator expressed on
T cells, and is also expressed on natural killer (NK) cells. The function of Tim-3 chiefly restricts IFNγ-production in T
cells, however, the impact of Tim-3 on NK cell function has not been clearly elucidated.

Results: In this study, we demonstrated down-regulation of Tim-3 expression on NK cells while Tim-3 is
upregulated on CD4+ T cells during HIV infection. Functional assays indicated that Tim-3 mediates suppression of
CD107a degranulation in NK cells and CD4+ T cells, while it fails to inhibit the production of IFN-γ by NK cells.
Analyses of downstream pathways using an antibody to block Tim-3 function demonstrated that Tim-3 can inhibit
ERK and NFκB p65 signaling; however, it failed to suppress the NFAT pathway. Further, we found that the NFAT
activity in NK cells was much higher than that in CD4+ T cells, indicating that NFAT pathway is important for
promotion of IFN-γ production by NK cells.

Conclusions: Thus, our data show that the expression of Tim-3 on NK cells is insufficient to inhibit IFN-γ
production. Collectively, our findings demonstrate a potential mechanism of Tim-3 regulation of NK cells and a
target for HIV infection immunotherapy.
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Introduction
Human immunodeficiency virus (HIV) infection can cause
acquired immunodeficiency syndrome, which is character-
ized by CD4+ T cell depletion, recurrent opportunistic in-
fections, and ultimately, immune exhaustion. During HIV
infection, HIV-specific CD4+ T cells producing both
interferon-gamma (IFN-γ) and IL-2 were associated with
protective immunity [1, 2], and natural killer (NK) cells
can secret IFN-γ to enhance antiviral reactions [3, 4]. In
addition, NK cells can release perforin and granzymes
from their cytoplasm after activation, indicated by
lysosome-associated membrane protein-1 (LAMP-1,
CD107a), a recognized marker of NK cell activity [5].
The function of NK cells is dependent on their balance

of activating and inhibitory receptors, including c-type
lectins, killer immunoglobulin receptors, natural cyto-
toxicity receptors, and FcγRIIIa receptor (CD16) [6].
Recently, T cell immunoglobulin and mucin-domain-
containing molecule-3 (Tim-3) has also been reported to
be expressed on NK cells as a receptor [7, 8], which was
initially identified as an inhibitory receptor on terminally
differentiated CD4+ T cells that suppresses cytokine pro-
duction and promotes tumor proliferation, as well as
HIV and hepatitis C virus infection [9–11].
Although Tim-3 has been reported to be expressed on

NK cells, the specific details of its expression and
function remain controversial. Jost et al. demonstrated
reduced Tim-3 levels on NK cells from untreated indi-
viduals infected with HIV [12], while Finney et al. re-
ported elevated Tim-3 levels on NK cells during HIV
infection, particularly the CD56bri subset [13]. It has
been reported that Tim-3 is an inhibitory receptor that
suppresses NK cell-mediated cytotoxicity in healthy sub-
jects [14]; however, others reported that Tim-3 acts as
an activating receptor, that is inducible by stimulation
with various cytokines and functions to promote IFN-γ
production [7]. Given this discordance in the findings of
studies of the expression and function of Tim-3 on NK
cells in HIV-infected individuals, further investigations
are required to clarify the role of Tim-3 in NK cell
function.

In this study, we found that Tim-3 expression is re-
duced on NK cells during HIV infection, while Tim-3 is
upregulated on CD4+ T cells. Additionally, Tim-3 in-
hibits the expression of CD107a on NK cells and CD4+

T cells; however, we found that Tim-3 fails to inhibit
IFN-γ production in NK cells, unlike in CD4+ T cells.
Furthermore, we found that Tim-3 fails to inhibit the
NFAT pathway, and that the NFAT pathway is import-
ant for induction of IFN-γ production in NK cells.

Materials and methods
Study subjects
Forty-one subjects were enrolled from the men who
have sex with men (MSM) cohort of Voluntary Counsel-
ing and Testing for HIV and Red Ribbon clinics in the
First Affiliated Hospital of China Medical University, in-
cluding 13 HIV-negative controls (HIV−) and 28 subjects
with chronic HIV infection (HIV+) who had been in-
fected with HIV for > 1 year, and who had not received
highly active antiretroviral therapy (HAART). The
characteristics of the subjects enrolled in the study are
presented in Table 1.

Detection of Tim-3 expression
Cryopreserved peripheral blood mononuclear cells
(PBMCs) were thawed and surface stained with CD3-
FITC, CD4-APC-Cy7, CD56-PE-Cy7 (BD Biosciences),
and Tim-3-PE (BioLegend). NK cells were defined as
CD3− CD56 + lymphocytes [12, 14]. All samples were
acquired using an LSR II Fortessa cytometer (BD Biosci-
ences), and data analyzed using FacsDiva™ 8.0.3 (URL:
www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL:
www.flowjo.com/flowjo-eula/).

IFN-γ and CD107a assays
PBMCs were thawed and stimulated with IL-12 (10 ng/
mL, R&D) and IL-15 (50 ng/mL, R&D) in 96-well plates
for 24 h at 37 °C in 5% CO2. CD107a-APC-Cy7 (BD Bio-
sciences) and monensin (GolgiStop, BD Biosciences)
were added into the wells 5 h before harvesting. Cells
were harvested and washed with PBS, then surface

Table 1 Characteristics of subjects enrolled in this study

Characteristics HAART-naïve HIV-infected subjects HIV-
negative
controls

CD4+ T cell high group CD4+ T cell low group

Number of subjects 15 13 13

Age (years); median (range) 25 (19, 51) 30 (25, 49) 26 (21, 44)

MSM (No, %) 15 (100%) 13 (100%) 13 (100%)

CD4+ T cell count (cells/μl); median (range) 560 (370–1229) 274 (139–347) N/A

Viral load (copies/ml); median (range) 1380 (191–17,600) 68,900 (22900–226,000) N/A

Time since infection (years); median (range) 2.54 (1–6.08) 2.28 (1.01–9.49) N/A

HAART highly active antiretroviral therapy, MSM men who have sex with men
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stained with CD3-FITC, CD4-BV421, CD56-PE-Cy7,
and Tim-3-PE. After fixing and permeabilizing with Fix-
ation/Permeabilization Solution Kit (BD Biosciences),
intracellular staining of anti-IFN-γ-APC (BD Biosci-
ences) was conducted. Subsequently, cells were washed
with PBS and fixed in 1% polyformaldehyde. The
proportions of IFN-γ and CD107a-positive cells were de-
tected using a BD LSR II and analyzed using FacsDiva™
8.0.3 (URL: www.bdbiosciences.com) and FlowJo™ 10.5.0
(URL: www.flowjo.com/flowjo-eula/).

Blockade using anti-Tim-3
PBMCs from HIV-negative donors were stimulated with
IL-12 and IL-15 in 96-well plates (24 h, 37 °C, 5% CO2).
Purified anti-human Tim-3 blocking antibody (20 μg/ml)
or Purified mouse IgG1 κ isotype control antibody
(BioLegend), CD107a-APC-Cy7, and monensin were
added for 5 h before harvesting. Cells were harvested
and washed with PBS, then surface stained with CD3-
Percp-cy5.5, CD4-BV421, CD56-PE-Cy7, and Tim-3-PE.
After fixing and permeabilizing, intracellular staining of
IFN-γ-APC, Phospho-NFκB p65-PE, Alexa Fluor® 488
Mouse Anti-ERK1/2 (pT202/pY204), or Alexa Fluor®
488 anti-NFAT was conducted. Cells were then washed
with PBS and analyzed by FlowJo™ 10.5.0 (URL: www.
flowjo.com/flowjo-eula/).

Detection of the effects of signaling pathway inhibitors
PBMCs from HIV-negative donors were stimulated with
IL-12 and IL-15 in 96-well plates (24 h, 37 °C, 5% CO2).
ERK inhibitor (PD98059, R&D), NFκB p65 inhibitor
(PDTC, R&D), or NFAT inhibitor (480401-M, R&D)
were added 6 h before harvesting. Cells were then har-
vested and analyzed by FlowJo™ 10.5.0 (URL: www.
flowjo.com/flowjo-eula/).

Reverse transcription and quantitative real-time PCR
Total RNA from PBMCs from HIV-negative donors was
isolated using an RNeasy Plus Mini Kit (Qiagen) and
reverse transcribed using a Primpscript® RT reagent kit
(TAKARA, Japan), following the manufacturer’s proto-
col. Real-time PCR for detection of mRNA was per-
formed using SYBR® Premix Ex Taq™ II (TAKARA),
with the following primer sets (Beijing Genomics Insti-
tute, BGI): IFN-γ forward, 5′- CAG CTC TGC ATC
GTT TTG GG and reverse, 5′- GTT CCA TTA TCC
GCT ACA TCT GAA; and GAPDH forward, 5′- ACA
TCG CTC AGA CAC CAT G and reverse, 5′- TGT
AGT TGA GGT CAA TGA AGG G. mRNA expression
levels were normalized to those of GAPDH. Changes in
mRNA expression were calculated using the 2−ΔΔCp

method [15].

Statistical analysis
The Mann-Whitney and Wilcoxon matched-pairs signed
rank tests were used for comparisons of data between
two groups. A p-value < 0.05 (two-tailed test) was
considered statistically significant. All data analysis was
performed using GraphPad Prism 9.0 (URL: www.
graphpad.com).

Results
Tim-3 expression is decreased on NK cells but increased
on CD4+ T cells in subjects with HIV infection
Tim-3 expression was measured on NK cells and CD4+

T cells from HIV-negative controls (HIV−) and subjects
with chronic HIV infection (HIV+). On NK cells, the
percentage of cells expressing Tim-3 in both HIV+ sub-
jects and the HIV+ CD4+ T cell low group were lower
than that in HIV− subjects (p = 0.0224 and 0.0159, re-
spectively; Fig. 1a), while there was no significant differ-
ence between the HIV+ CD4+ T cell high group and
HIV− subjects. In contrast to the Tim-3 expression on
NK cells, an increased percentage of Tim-3 expression
was observed on CD4+ T cells from HIV+ subjects com-
pared with HIV− subjects (p < 0.0001), regardless of
whether they had high (p = 0.0019) or low (p < 0.0001)
CD4+ T cell counts, and the HIV+ CD4+ T cell low
group had higher Tim-3 expression than that of the
HIV+ CD4+ T cell high group (p = 0.0061; Fig. 1b). Our
data suggest that Tim-3 expression is down-regulated on
NK cells, but up-regulated on CD4+ T cells in subjects
with HIV infection.

There is no difference in IFN-γ production between Tim-
3+ and Tim-3− NK cells, unlike corresponding CD4+ T cells
Following measurement of Tim-3 expression on NK and
CD4+ T cells, we further evaluated differences in cell
function between Tim-3+ and Tim-3− NK or CD4+ T
cells. Representative flow cytometry plots for CD107a
expression and IFN-γ production in Tim-3−/+ CD4+ T
cells and Tim-3−/+ NK cells are presented in Fig. 2a. Our
data demonstrated that, in CD4+ T cells, the percentages
of cells expressing CD107a and producing IFN-γ were
lower in Tim-3+ populations than Tim-3− populations in
the HIV+ group (p < 0.0001 and p = 0.0002, respectively;
Fig. 2b, c). Further, we found that CD107a expression on
Tim-3+ NK cells was significantly decreased compared
with Tim-3− NK cells in both the HIV− (p = 0.0002) and
HIV+ groups (p < 0.0001; Fig. 2d); however, IFN-γ pro-
duction did not differ significantly between Tim-3+ and
Tim-3− NK cells in either the HIV− or HIV+ groups (Fig.
2e). Taken together, our results indicate that CD107a ex-
pression on Tim-3+ cells are decreased both on CD4+ T
cells and NK cells. However, IFN-γ production in Tim-
3+ NK cells is not reduced unlike in CD4+ T cells.
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Fig. 1 Tim-3 expression on NK cells and CD4+ T cells in HIV−, HIV+, HIV+ CD4+ T cell high, and HIV+ CD4+ T cell low groups. a The percentage of
Tim-3 expression on NK cells (HIV−, n = 13; HIV+, n = 28; HIV+ CD4+ T cell high, n = 15; and HIV+ CD4+ T cell low, n = 13). b The percentage of
Tim-3 expression on CD4+ T cells in each of the four groups (HIV−, n = 13; HIV+, n = 28; HIV+ CD4+ T cell high, n = 15; and HIV+ CD4+ T cell low
n = 13). All data analysis was performed using GraphPad Prism 9.0 software (URL: www.graphpad.com). A Mann–Whitney test was used to
compare groups; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 2 CD107a expression and IFN-γ production in Tim-3−/+ CD4+ T and Tim-3−/+ NK cells. a Representative flow cytometry plots of CD107a and
IFN-γ levels in CD4+ T and NK cells. b–c CD107a expression and IFN-γ production in Tim-3−/+ CD4+ T cells from HIV+ subjects (n = 28). d–e
CD107a expression and IFN-γ production in Tim-3−/+ NK cells in HIV− (n = 13) and HIV+ (n = 28) subjects. All data analyzed using FacsDiva™ 8.0.3
(URL: www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL: www.flowjo.com/flowjo-eula/). A Wilcoxon matched-pairs signed rank test (GraphPad
Prism 9.0, URL: www.graphpad.com) was used to compare groups; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Blockade of Tim-3 had no effect on IFN-γ production, but
up-regulated CD107a expression on NK cells
Given the differences in CD107a expression and
IFN-γ production we observed between Tim-3− and
Tim-3+ cells, we further explored whether Tim-3 ex-
pression had any effect on cell function. PBMCs
from HIV-negative donors were stimulated with IL-
12/IL-15 and incubated with Tim-3 blocking

antibody. The cell viability after 24-h stimulation is
still good, around 96.3% (supplementary Figure 1).
Our data show that IFN-γ mRNA expression was
not increased in NK cells (Fig. 3a) when Tim-3 was
blocked, while it was upregulated in CD4+ T cells
(p = 0.0286; Fig. 3b). Subsequently, the level of IFN-γ
protein was detected by flow cytometry. Representa-
tive flow cytometry plots are presented in Fig. 3c. In

Fig. 3 The influence of Tim-3 blockade on CD107a expression and IFN-γ production in CD4+ T and NK cells. a–b Relative mRNA expression of
IFN-γ in NK and CD4+ T cells with Tim-3 blockade (n = 4). c Representative flow cytometry plots of expression of CD107a expression and IFN-γ
production in CD4+ T and NK cells incubated with anti-human Tim-3 blocking antibody or IgG control. d–e IFN-γ production in CD4+ T and NK
cells with Tim-3 blockade (n = 4). f–g CD107a expression on CD4+ T and NK cells with Tim-3 blockade (n = 4). All data analyzed using FacsDiva™
8.0.3 (URL: www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL: www.flowjo.com/flowjo-eula/). A Wilcoxon matched-pairs signed rank test
(GraphPad Prism 9.0, URL: www.graphpad.com) was used for comparisons between two groups; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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CD4+ T cells, our data show that IFN-γ production
was upregulated by Tim-3 blockade (p = 0.0036; Fig.
3d); however, this treatment failed to enhance IFN-γ
production by NK cells (Fig. 3e), consistent with our
mRNA results (Fig. 3a, b). CD107a expression on
Tim-3+ and NK cells was also detected by flow cy-
tometry. Representative flow cytometry plots are pre-
sented in Fig. 3c. We found that CD107a expression
was upregulated on CD4+ T cells (p = 0.007; Fig. 3f)
and NK cells (p = 0.0047; Fig. 3g) on application of
the Tim-3 blocking antibody. Collectively, these data
demonstrate that Tim-3 fails to suppress IFN-γ pro-
duction by NK cells, despite acting as an inhibitory
receptor on both NK and CD4+ T cells.

Tim-3+ NK cells have reduced ERK and NFκB p65
phosphorylation compared with Tim-3− NK cells, but have
higher NFAT activity than Tim-3+ CD4+ T cells
IFN-γ production can be mediated by multiple pathways
in both NK and CD4+ T cells, primarily the ERK [16],
NFκB p65 [17], and NFAT [18, 19] signaling pathways.
Based on our observation that Tim-3 is an inhibitory re-
ceptor, we further explored whether Tim-3 could also
suppress these pathways. ERK and NFκB p65 phosphor-
ylation and NFAT activity were analyzed in Tim-3−/+

NK cells and Tim-3−/+ CD4+ T cells. We found that the
level of ERK phosphorylation in Tim-3+ NK cells was
lower than that in Tim-3− NK cells (p = 0.0322; Fig. 4a,
b), with similar results in CD4+ T cells (p < 0.0001; Fig.

Fig. 4 ERK phosphorylation, NFκB p65 phosphorylation, and NFAT activity in Tim-3−/+ NK and Tim-3−/+ CD4+ T cells. a–b Representative flow
cytometry plots and statistical analyses of ERK phosphorylation in Tim-3−/+ NK and Tim-3−/+ CD4+ T cells (n = 4). c–d Representative flow
cytometry plots and statistical analyses of NFκB p65 phosphorylation in Tim-3−/+ NK and Tim-3−/+ CD4+ T cells (n = 4). e–f Representative flow
cytometry plots and statistical analyses of NFAT activity in Tim-3−/+ NK and Tim-3−/+ CD4+ T cells (n = 4). All data analyzed using FacsDiva™ 8.0.3
(URL: www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL: www.flowjo.com/flowjo-eula/). Wilcoxon matched-pairs signed rank tests (GraphPad
Prism 9.0, URL: www.graphpad.com) were used to compare the two groups; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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4a, b). Meanwhile, the much lower levels of NFκB p65
phosphorylation were detected in Tim-3+ NK cells and
Tim-3+ CD4+ T cells (p = 0.0007 and p = 0.0043, respect-
ively; Fig. 4c, d). Nevertheless, we found no significant
difference in NFAT activity between Tim-3+ and Tim-3−

NK cells or between Tim-3+ and Tim-3− CD4+ T cells.
Further, we found that NFAT activity was much higher
in Tim-3+ NK cells than that in Tim-3+ CD4+ T cells
(p = 0.0076; Fig. 4e, f).

Tim-3 blockade enhances ERK and NFκB p65
phosphorylation, but fails to alter NFAT activity in NK
cells
Next, we investigated whether Tim-3 blockade had any
effect on the ERK, NFκB p65, and NFAT pathways. As
illustrated in Fig. 5a, b, levels of ERK phosphorylation in

NK and CD4+ T cells were up-regulated after treatment
with the Tim-3 blocking antibody (p = 0.0002 and p =
0.0003, respectively). In addition, we found that NFκB
p65 phosphorylation levels were up-regulated in NK
and CD4+ T cells on Tim-3 blockade (p = 0.0005 and
p < 0.0001, respectively; Fig. 5c, d). Further, our data
demonstrate that NFAT activity did not increase after
blocking Tim-3 in NK and CD4+ T cells (Fig. 5e, f).
Overall, these results indicate that Tim-3 suppresses
ERK and NFκB p65 phosphorylation, but fails to in-
hibit NFAT activity in NK cells.

NFAT signaling in NK cells has a more significant role in
IFN-γ production than that in CD4+ T cells
Next, we examined the contributions of the ERK, NFκB
p65, and NFAT pathways to IFN-γ production by NK

Fig. 5 ERK phosphorylation, NFκB p65 phosphorylation, and NFAT activity following Tim-3 blockade in NK and CD4+ T cells. a–b Representative
flow cytometry plots and statistical analyses of ERK phosphorylation following Tim-3 blockade in NK and CD4+ T cells (n = 4). c–d Representative
flow cytometry plots and statistical analyses of NFκB p65 phosphorylation following Tim-3 blockade in NK and CD4+ T cells (n = 4). e–f
Representative flow cytometry plots and statistical analyses of NFAT activity with Tim-3 blockade in NK and CD4+ T cells (n = 4). All data analyzed
using FacsDiva™ 8.0.3 (URL: www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL: www.flowjo.com/flowjo-eula/). Wilcoxon matched-pairs signed
rank tests (GraphPad Prism 9.0, URL: www.graphpad.com) were used to compare the two groups; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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and CD4+ T cells, using the pathway inhibitors
PD98059, PDTC, and 480401-M. Our results show that
inhibition of the ERK, NFκB p65, or NFAT pathway
could inhibit IFN-γ production (p = 0.0286, p = 0.0286,
and p < 0.0001, respectively; Fig. 6a, b), and that 480401-
M, the inhibitor of the NFAT pathways, more strongly
suppressed IFN-γ, compared with PD98059 and PDTC
(p = 0.0019 and p = 0.0052, respectively; Fig. 6a, b), indi-
cating an important role for the NFAT pathway in pro-
moting IFN-γ production by NK cells relative to ERK
and NFκB p65 signaling; however, unlike NK cells, IFN-
γ production in CD4+ T cells was not significantly de-
creased by inhibition of the NFAT pathway (Fig. 6c, d).
Thus, our results suggest that the NFAT pathway has a
significant role in IFN-γ production in NK cells, but not
in CD4+ T cells.

Discussion
Our study showed that Tim-3 expression was decreased
on total NK cells in subjects with HIV infection, which
is consistent with previous reports from Jost et al. [12]
and de Kivit et al. [20]. One possible reason for the
down-regulated Tim-3 expression on NK cells is high

expression of its ligand, combined with Tim-3, leading
to endocytosis and failure of cell surface detection; alter-
natively, the reduced expression might be due to feed-
back regulation of Tim-3 expression to promote NK cell
cytotoxicity. Finney et al. reported that Tim-3 expression
was elevated on NK cells during HIV infection [13]. The
reason for our contrasting conclusions could be attribut-
able to differences in the disease stage of the HIV-
infected subjects in the two studies. Alternatively, there
may be a difference in the study populations of the two
studies, since the subjects with HIV infection in our
study were MSM, with HIV− MSM as controls. In stud-
ies of Tim-3 function, Ndhlovu et al. reported that, in
samples from healthy donors, Tim-3 could inhibit NK
cell-mediated cytotoxicity; however, they did not present
data on IFN-γ production [14]. Further, Ju et al. demon-
strated that stimulation with Tim-3 antibody could in-
hibit IFN-γ production by NK cells during HBV
infection [21]; however, Gleason et al. proved that Tim-3
could enhance IFN-γ production as an activating recep-
tor on NK cells, but did not investigate the possibility of
NK cell cytotoxicity regulation by Tim-3 [7]. Evaluation
of both IFN-γ production and CD107a expression

Fig. 6 Influence of ERK, NFκB p65, and NFAT inhibitors on IFN-γ production by NK and CD4+ T cells. a–b Representative flow cytometry plots and
statistical analyses of IFN-γ production following treatment with PD98059 (ERK inhibitor), PDTC (NFκB p65 inhibitor), 480401-M (NFAT inhibitor),
PD98059 + PDTC, or PD98059 + PDTC + 480401-M, in NK cells (n = 4). c–d Representative flow cytometry plots and statistical analyses of IFN-γ
production following PD98059, PDTC, 480401-M, PD98059 + PDTC, or PD98059 + PDTC + 480401-M treatment in CD4+ T cells (n = 4). All data
analyzed using FacsDiva™ 8.0.3 (URL: www.bdbiosciences.com) and FlowJo™ 10.5.0 (URL: www.flowjo.com/flowjo-eula/). Wilcoxon matched-pairs
signed rank tests (GraphPad Prism 9.0, URL: www.graphpad.com) were used to compare the two groups; *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001
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represents a comprehensive approach to assessment of
Tim-3 function in NK cells; therefore, we assayed both
of these processes and our data clearly demonstrate that
Tim-3 inhibits CD107a degranulation, but could not
suppress IFN-γ production by NK cells.
Moreover, we further explored the signaling pathway

mechanism that Tim-3 could not inhibit the production
of IFN-γ on NK cells. The ERK [22], NFκB p65 [23], and
NFAT [24, 25] pathways are important for IFN-γ pro-
duction in NK cells. Gleason et al. reported that, as an
activating receptor, Tim-3, could enhance IFN-γ produc-
tion via ERK phosphorylation in NK cells [7]; however,
contrary to those results, we found that the level of ERK
phosphorylation in Tim-3+ NK cells was decreased rela-
tive to Tim-3− NK cells, and that Tim-3 blockade could
facilitate ERK phosphorylation, confirming that Tim-3
can act as an inhibitory receptor on NK cells to suppress
ERK phosphorylation. In addition, we found that NFκB
p65 phosphorylation was also down-regulated by Tim-3
in NK cells, and our experiments demonstrated that NF-
κB p65 phosphorylation was enhanced on Tim-3 block-
ade, consistent with a study of thyroid-associated
ophthalmopathy, indicating that Tim-3 suppresses the
NFκB p65 pathway to alleviate inflammation [26]. Al-
though we found that Tim-3 could inhibit the ERK and
NFκB p65 pathways in NK cells, it failed to suppress
IFN-γ production, prompting us to explore whether this
involved the NFAT pathway. Our analyses indicate that
Tim-3 fails to inhibit NFAT activity in NK cells and,
more importantly, that the NFAT pathway has a more
significant role in IFN-γ production in NK cells than

ERK and NFκB p65 signaling. We interpret these find-
ings as indicating that Tim-3 can act as an inhibitory re-
ceptor, suppressing the ERK and NFκB p65 pathways,
but fails to inhibit NFAT signaling. Thus the production
of IFN-γ in NK cells can be maintained via the NFAT
pathway, sustaining the total amount of IFN-γ produc-
tion (Fig. 7).
This study has some limitations. We included HIV−

MSM as control group, HIV− MSM and HIV+ MSM
had more similar epidemiological and behavioral char-
acteristics compared to HIV− heterosexuals, and thus
HIV− MSM were more appropriate to be used as
controls, while it might be possible that there were
very few HIV-exposed seronegative individuals in
HIV− MSM. In this study, IL-12 and IL-15 were used
to study the signaling pathway of NK cells for produ-
cing IFN-γ, so CD4+ T cells were also stimulated with
IL-12 and IL-15 to compare with NK cells, while the
TCR-mediated CD4+ T cell responses were not con-
sidered. Although it has been reported that cytokine
stimulation is important for CD4+ T cell function
[27], the TCR-mediated CD4+ T cell responses should
be further explored in the future.
Overall, our data demonstrate that Tim-3 expression

is down-regulated on NK cells during HIV infection, and
fails to inhibit IFN-γ production via the NFAT pathway,
which is the most significant route for induction of IFN-
γ production in NK cells. These findings relating to
Tim-3 provide new avenues for further research into the
mechanisms underlying HIV infection and immunother-
apeutic approaches.

Fig. 7 The mechanism of the effect of Tim-3 on IFN-γ production by NK and CD4+ T cells. Tim-3 can inhibit ERK and NFκB p65 signaling;
however, it fails to inhibit the NFAT pathway, which is a major pathway promoting IFN-γ production by NK cells. Thus the production of IFN-γ in
NK cells can be maintained via the NFAT pathway
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